CSSE 220 Day 2

Class, Objects, and Methods in Java
UML Class Diagram Basics

Your questions about ...

» The syllabus
» Java
» etcC.

» Could everyone checkout and commit the
HWI1 project?

Announcements

» Please do not sit in the back row or on the far
right side of the room.

» Please consider making your picture on
ANGEL visible to students in your courses.

0 Home-> Preferences (wrench icon)-> Personal info

» If you want all of your ANGEL mail to also go to
your regular mail, too, you can set it that way.

- Home—> Preferences - System Settings

» You can subscribe to the ANGEL discussion
forums. (From the Communicate menu)

More announcements

» Cell Phones
- please set ringers to silent or quiet.
- Minimize class disruptions.
- But sometimes there are emergencies.
» Personal needs

> |If you need to leave class for a drink of water, a trip
to the bathroom, or anything like that, you need not
ask me. Just try to minimize disruptions.

» Please be here and have your computer up
and running by class time as best you can.

Bonus points for reporting bugs

» In the textbook

» In any of my materials.

» Use the Bug Report Forum on ANGEL
» More details in the Syllabus

» New edition of the text, so I'll probably mess
up some page numbers...

» Subscribe to the discussion forums on ANGEL

Some major emphases of 220

» Reinforce from 120:
- Procedural programming (functions, conditionals, loops, etc)

> Using objects
» Object-Oriented Design

- Major emphasis on interfaces
> GUI programming using Java Swing
- UML class diagrams

» Software Engineering concepts

y Data Structures

> Introduce algorithm efficiency analysis

- Abstract data types

- Specifying and using standard data structures
- Implementing simple data structures (lists)

» Recursion

v Sorting and searching algorithms
~3s examples for the above

What will | spend my time
doing?

» Small programming assignments in class

» Larger programming problems, mostly outside of

class

- Exploring the JDK documentation to find the classes and
methods that you need

- Debugging!
- Reviewing other students’ code
» Reading (a lot to read at the beginning; less later)
> Thinking about exercises in the textbooks
- Some written exercises, mostly from the textbook

» Discussing the material with other students

ldentifiers (Names) in Java

» The rules:
- Start with letter or underscore (_)
- Followed by letters, numbers, or underscores

» The conventions:
° variableNamesLikeThis
c methodNamesLikeThis(...)
o ClassNamesLikeThis

Q1-3

Variables in Java

» Like C:

o int xCoordinate = 10;

» But Java catches some mistakes:
int width, height, area;
area = width * height;

What does this do in C?

> Java will detect that width and height aren’t
initialized!

Using Objects and Methods

- - ; “Who does What,
» Works just like Python: i o e

- object.method(argument, ...)

Implicit Explicit

argument arguments

» Java Example: The dot notation is
String name = "Bob Forapples"; also used for fields

PrintStream printer = System.out;

int namelLen = name.length() ;
printer.printf (" '%s' has %d characters", name, namelen) ;

Q4

Separating Use from
Implementation

» Can use methods of an object without
knowing how they are implemented

- Recall zellegraphics from csse 120:
line.setWidth (5)

Class name

UML Class Diagram

Fields

» Shows the:

o Attributes

(data, called fields
in Java) and

o Operations
(functions, called
methods in Java)

of the objects of a class
» Does not show the
implementation

» Is not necessarily
complete

Methods
String methods are - if the method

produces a String, the method returns that String
rather than mutating (changing) the implicit argument

Passing Parameters

» Arguments can be any expression of the “right” type
> See example...

» What happens if we try to give substring () an explicit
argument that isn’t a number?

- How does the compiler know that rhit.length () evaluates to
a humber?

> What’s the return type of length ()?

» Static types help the compiler catch bugs.
> Important in large programs

String rhit = “Rose-Hulman”;

System.out.println ("Rose") ;
System.out.println(rhit.substring(0, 4));
System.out.println(rhit.substring (0, 2+2));
System.out.println(rhit.substring (0, rhit.length() - 7))
.out.println ("Rose-Hulman".substring (0, 4));

Primitive types

fi 1.2
Primitive Type = What It Stores Range igure

The eight primitive

byte 8-bit integer -128 to 127 types in Java

short 16-bit integer —32,768 to 32,767

32-bit integer —2,147,483,648 to 2,147,483,647
64-bit integer 26340203 1

32-bit floating-point 6 significant digits (10746, 10%%)

64-bit floating-point 15 significant digits (10724, 10398
nicode character

false and true

Most common

AL be £ types i Copyright © 2006 Pearson
Java code Addison-Wesley. All rights QS

1-34 reserved.

Constructing Objects

left, top, width, height
» Example:

Rectangle box = new Rectangle(5, 10, 20, 30);

» Several steps are happening here:
1. Java reserves space for a Rectangle object
2. Rectangle’s constructor runs, filling in slots in object
3. Java reserves a variable named box
4. box is set to refer to the object

Q6

Accessors and Mutators

» Accessor methods
- Get a value from an object
- Examples:

* box.getHeight ()
* box.getWidth ()

» Mutator methods
- Change the state of an object (i.e., the value of one

or more fields)
. Examples: Tip: Use mutators with care!

- box.translate (10, 20)

- box.setSize (5, 5)
Q7-8

Reminder: In all your code:

» Write appropriate comments:
- Javadoc comments for public fields and methods.
- Explanations of anything else that is not obvious.

» Give self-documenting variable and method names:

- Use name completion in Eclipse, Ctrl-Space, to keep typing
cost low and readability high.

» Use Ctrl-Shift-F in Eclipse to format your code.

» Take care of all auto-generated TODO's.
> Then delete the TODO comment.

» Correct ALL compiler warnings.) :” ‘ﬂ%

2 uick Fix is your friend! %2 bt =

Q9-10

