
Analysis of Algorithms continued

Recursion

 On Capstone Project?

◦ Automatic extension to Monday morning

◦ If a team member does not wish to join the team in its extension-
decision, see me to work it out

◦ Final reflection is open – do it when you are done with project!!!

 On Exam 2?

◦ Complete by now unless you have made/make arrangements with me

 On grading of Exam 1:

◦ Earn back points!

◦ Fix FIXME’s (but keep FIXME in comment) and recommit.

◦ Complete before the final exam.

 Final exam:

◦ Take it either (your choice):

 Tuesday 1 p.m. in F-231 (CSSE conference room), or

 Friday 1 p.m. in G-313 or G-315 (your choice)

◦ Open everything, HALF paper and pencil, about 90 minutes

◦ Covers last few days

 Questions on anything else?

 Algorithm analysis, review

 Recursion, review

 Recursion, making it efficient

 Data structures, how to choose

 Implementation of Linked Lists

 Work on Capstone

 Formal:
◦ We say that f(n) is O(g(n)) if and only if

◦ there exist constants c and n0 such that

◦ for every n ≥ n0 we have

◦ f(n) ≤ c × g(n)

 Informal:
◦ f(n) is roughly

proportional to g(n),
for large n

 Factorial:

 Ackermann function:

Base Case

Recursive step

Q4

 Always have a base case that doesn’t recurse

 Make sure recursive case always makes
progress, by solving a smaller problem

 You gotta believe
◦ Trust in the recursive solution

◦ Just consider one step at a time

 Describe basic searching & sorting algorithms:
◦ Search

 Linear search of an UNsorted array

 Linear seach of a sorted array (silly, but good example)

 Binary search of a sorted array

◦ Sort

 Selection sort

 Insertion sort

 Merge sort

 Determine the best and worst case inputs for each

 Derive the run-time efficiency of each, for best and
worst-case

 For an unsorted / unorganized array:

◦ Linear search is as good as anything:

 Go through the elements of the array, one by one

 Quit when you find the element (best-case = early) or
you get to the end of the array (worst-case)

◦ We’ll see mapping techniques for unsorted but
organized data

◦ Best-case: O(1)

◦ Worst-case: O(n)

 For a sorted array:
◦ Linear search of a SORTED array:

 Go through the elements starting at the beginning

 Stop when either:

 You find the sought-for number, or

 You get past where the sought-for number would be

◦ But binary search (next slide) is MUCH better

◦ Best-case: O(1)

◦ Worst-case: O(n)

search(Comparable[] a, int start, int stop, Comparable sought) {

if (start > stop) {

return NOT_FOUND;

}

int middle = (left + right) / 2;

int comparison = a[middle].compareTo(sought);

if (comparison == 0) {

return middle;

} else if (comparison > 0) {

return search(a, 0, middle – 1, sought);

} else {

return search(a, middle + 1, stop, sought);

}

}
Best-case: O(1)

Worst-case: O(log n)

 Basic idea:
◦ Think of the list as having a sorted part (at the

beginning) and an unsorted part (the rest)

◦ Find the smallest number
in the unsorted part

◦ Exchange it with the element
at the beginning of the
unsorted part (making the
sorted part bigger and the
unsorted part smaller)

Repeat until
unsorted
part is
empty

Best-case: O(n2)

Worst-case: O(n2)

 Basic idea:
◦ Think of the list as having a sorted part (at the

beginning) and an unsorted part (the rest)

◦ Get the first number in the
unsorted part

◦ Insert it into the correct
location in the sorted part,
moving larger values up
in the array to make room

Repeat until
unsorted
part is
empty

Best-case: O(n)

Worst-case: O(n2)

 Basic recursive idea:
◦ If list is length 0 or 1, then it’s already sorted

◦ Otherwise:

 Divide list into two halves

 Recursively sort the two halves

 Merge the sorted halves back together

 Analysis: use tree-based sketch…

Best-case: O(n log n)

Worst-case: O(n log n)

 Algorithm analysis, review

 Recursion, review

 Recursion, making it efficient

 Data structures, how to choose

 Implementation of Linked Lists

 Work on Capstone

 Why does recursive Fibonacci take so long?!?
◦ Answer: it recomputes subproblems repeatedly: O(2n)

 Can we fix it? Yes! Just:

1. “Memorize” every solution we find to subproblems,
and

2. Before you recursively compute a solution to a
subproblem, look it up in the “memory table” to see
if you have already computed it

This is a classic time-space tradeoff
• A deep discovery of computer science

• Tune the solution by varying the amount of storage

space used and the amount of computation performed

• Studied by “Complexity Theorists”

• Used everyday by software engineers

A more careful analysis

yields a smaller base but

it is still exponential.

 Algorithm analysis, review

 Recursion, review

 Recursion, making it efficient

 Data structures, how to choose

 Implementation of Linked Lists

 Work on Capstone

Understanding the
engineering trade-offs when
storing data

 Efficient ways to store data based on how
we’ll use it

 So far we’ve seen ArrayLists
◦ Fast addition to end of list

◦ Fast access to any existing position

◦ Slow inserts to and deletes from middle of list

 What if we have to add/remove data from a
list frequently?

 LinkedLists support this:
◦ Fast insertion and removal of elements

 Once we know where they go

◦ Slow access to arbitrary elements

“random access”

 void addFirst(E element)

 void addLast(E element)

 E getFirst()

 E getLast()

 E removeFirst()

 E removeLast()

 What about accessing the middle of the list?

◦ LinkedList<E> implements Iterable<E>

Enhanced For Loop What Compiler Generates

for (String s : list) {

// do something

}

Iterator<String> iter =

list.iterator();

while (iter.hasNext()) {

String s = iter.next();

// do something

}

 A simplified version, with just the essentials

 Won’t implement the java.util.List interface

 Will have the usual linked list behavior
◦ Fast insertion and removal of elements

 Once we know where they go

◦ Slow random access

 Boil down data types (e.g., lists) to their
essential operations

 Choosing a data structure for a project then
becomes:
◦ Identify the operations needed

◦ Identify the abstract data type that most efficient
supports those operations

 Goal: that you understand several basic
abstract data types and when to use them

 Array List

 Linked List

 Stack

 Queue

 Set

 Map

Implementations for all of
these are provided by the Java
Collections Framework in the

java.util package.

Operations
Provided

Array List
Efficiency

Linked List
Efficiency

Random access O(1) O(n)

Add/remove item O(n) (do you
see why?)

O(1) if you are
“at” the item

Q1,2

 A last-in, first-out (LIFO) data structure

 Real-world stacks
◦ Plate dispensers in the cafeteria

◦ Pancakes!

 Some uses:
◦ Tracking paths through a maze

◦ Providing “unlimited undo” in an application

Operations
Provided

Efficiency

Push item O(1)

Pop item O(1)

Implemented by
Stack, LinkedList,
and ArrayDeque in
Java

Q3

 A first-in, first-out (FIFO) data structure

 Real-world queues
◦ Waiting line at the BMV

◦ Character on Star Trek TNG

 Some uses:
◦ Scheduling access to shared resource (e.g., printer)

Operations
Provided

Efficiency

Enqueue item O(1)

Dequeue item O(1)

Implemented by
LinkedList and
ArrayDeque in Java

Q4

 Unordered collections without duplicates

 Real-world sets
◦ Students

◦ Collectibles

 Some uses:
◦ Quickly checking if an item is in a collection

Operations HashSet TreeSet

Add/remove item O(1) O(lg n)

Contains? O(1) O(lg n)

Can hog space Sorts items! Q5

 Associate keys with values

 Real-world “maps”
◦ Dictionary

◦ Phone book

 Some uses:
◦ Associating student ID with transcript

◦ Associating name with high scores

Operations HashMap TreeMap

Insert key-value pair O(1) O(lg n)

Look up value for key O(1) O(lg n)

Can hog space Sorts items by key! Q6

 Algorithm analysis, review

 Recursion, review

 Recursion, making it efficient

 Data structures, how to choose

 Implementation of Linked Lists – part of your
final exam!

 Work on Capstone

