CSSE 220 Day 29

Analysis of Algorithms continued
Recursion

» On Capstone Project?

' ?
- Automatic extension to Monday morning Qu e StIO n S -

> If a team member does not wish to join the team in its extension-
decision, see me to work it out

> Final reflection is open - do it when you are done with project!!!

» On Exam 27

- Complete by now unless you have made/make arrangements with me

» On grading of Exam 1:
> Earn back points!

> Fix FIXME’s (but keep FIXME in comment) and recommit.
- Complete before the final exam.

» Final exam:
- Take it either (your choice):

- Tuesday 1 p.m. in F-231 (CSSE conference room), or
- Friday 1 p.m. in G-313 or G-315 (your choice)

Rap everything, HALF paper and pencil, about 90 minutes
W Covers last few days

Questions on anything else?

Outline of today’s session

» Algorithm analysis, review
» Recursion, review

» Recursion, making it efficient
» Data structures, how to choose
» Implementation of Linked Lists

» Work on Capstone

Definition of big-Oh

» Formal:
- We say that f(n) is O(g(n)) if and only if
> there exist constants ¢ and n, such that
- for every n > n, we have
> f(n) < c x g(n)

» Informal:

Time

> f(n) is roughly
proportional to g(n), -
for large n

ning

Rur

My Input Size

Recursive Functions

» Factorial: /

' {1 ifn <1
. =

nx(n—1) otherwise

~—
-
» Ackermann function:

n—+1 itm=20
A(m,n) = ¢ A(m —1,1) if m>0andn=20
Alm —1,A(m,n — 1)) otherwise

Q4

Key Rules to Using Recursion

» Always have a base case that doesn’t recurse

» Make sure recursive case always makes
progress, by solving a smaller problem

» You gotta believe
> Trust in the recursive solution
> Just consider one step at a time

.

Course Goals for Searching and
Sorting: You should be able to ...

» Describe basic searching & sorting algorithms:

> Search
- Linear search of an UNsorted array
- Linear seach of a sorted array (silly, but good example)
- Binary search of a sorted array

> Sort
- Selection sort
 Insertion sort
- Merge sort

» Determine the best and worst case inputs for each

» Derive the run-time efficiency of each, for best and
worst-case

Recap: Search, unorganized data
» For an unsorted /| unorganized array:

- Linear search is as good as anything:
- Go through the elements of the array, one by one

- Quit when you find the element (best-case = early) or
you get to the end of the array (worst-case)

- We’ll see mapping techniques for unsorted but
organized data

- Best-case: O(1)
- Worst-case: O(n)

N\ \
\ \
\ WY
\ Q.
AN Bt &
\
hg
%

Recap: Search, sorted data

» For a sorted array:
> Linear search of a SORTED array:
- Go through the elements starting at the beginning
- Stop when either:

- You find the sought-for number, or
- You get past where the sought-for number would be

> But binary search (next slide) is MUCH better

- Best-case: O(1)
- Worst-case: O(n)

Recap: Search, sorted data

search (Comparable[] a, int start, int stop, Comparable sought) {
if (start > stop) {

return NOT_FOUND;

int middle = (left + right) / 2;

int comparison = a[middle] .compareTo (sought) ;

if (comparison == 0) {

return middle;
} else if (comparison > 0) {

return search(a, 0, middle - 1, sought);
} else {

return search(a, middle + 1, stop, sought);

Best-case: O(1)
Worst-case: O(log n)

Recap: Selection Sort

» Basic idea:

- Think of the list as having a sorted part (at the
beginning) and an unsorted part (the rest)

—_

> Find the smallest number
in the unsorted part

- Exchange it with the element
at the beginning of the
unsorted part (making the
sorted part bigger and the

unsorted part smaller)

Repeat until
unsorted

part is
empty

Best-case: O(n?)
Worst-case: O(n?)

Recap: Insertion Sort

» Basic idea:

- Think of the list as having a sorted part (at the
beginning) and an unsorted part (the rest)

—_

o Get the first number in the

unsorted part Repeat until
> Insert it into the correct unsorted

location in the sorted part, part is

moving larger values up empty

in the array to make room

Best-case: O(n)
Worst-case: O(n?)

Merge Sort

» Basic recursive idea:
o If list is length O or 1, then it’s already sorted
> Otherwise:
- Divide list into two halves
- Recursively sort the two halves
- Merge the sorted halves back together

» Analysis: use tree-based sketch...

Best-case: O(n log n)
Worst-case: O(n log n)

Outline of today’s session

» Algorithm analysis, review
» Recursion, review

» Recursion, making it efficient
» Data structures, how to choose

» Implementation of Linked Lists

I » Work on Capstone

A more careful analysis
. yields a smaller base but
Wh at t h e F | b_? it is still exponential.

» Why does recursive Fibonacci take so long?!? j
- Answer: it recomputes subproblems repeatedly: O(2")
» Can we fix it? Yes! Just:

1. “Memorize” every solution we find to subproblems,
and

2. Before you recursively compute a solution to a
subproblem, look it up in the “memory table” to see
if you have already computed it

This is a classic time-space tradeoff

» A deep discovery of computer science

» Tune the solution by varying the amount of storage
space used and the amount of computation performed
» Studied by “Complexity Theorists”

» Used everyday by software engineers

Outline of today’s session

» Algorithm analysis, review
» Recursion, review

» Recursion, making it efficient
» Data structures, how to choose

» Implementation of Linked Lists

I » Work on Capstone

Data Structures Recap

» Efficient ways to store data based on how
we’ll use it

» So far we’ve seen ArraylLists
- Fast addition to end of list
- Fast access to any existing position
> Slow inserts to and deletes from middle of list

Another List Data Structure

» What if we have to add/remove data from a
list frequently?

» LinkedL1sts support this:
- Fast insertion and removal of elements
- Once we know where they go
- Slow access to arbitrary elements

o

“random access”

LinkedList<E> Methods

» void addFirst(E element)
» void addLast(E element)
» E getFirst()

» E getLast()

» E removeFirst()

» E removelLast()

» What about accessing the middle of the list?
o LinkedList<E> implements Iterable<E>

Accessing the Middle of a
LinkedList

<<interfaces=
lterable<E>

| terator<E> iterator()

LinkedList<E>

<<interfaces:=
lterator<E>

boolean hasMext()
E next()
void remaove()

<<interfaces=
Listiterator<E>

void add(E element)
boolean hasPrevious()
E previous()

An Insider’s View

for (String s : list) { Iterator<String> iter =
// do something list.1terator();

3
while (iter.hasNext()) {

String s = iter.next();
// do something
}

Enhanced For Loop What Compiler Generates

Implementing LinkedList

» A simplified version, with just the essentials

» Won’t implement the java.util.List interface

» Will have the usual linked list behavior

- Fast insertion and removal of elements
- Once we know where they go
> Slow random access

Abstract Data Types (ADTs)

» Boil down data types (e.g., lists) to their
essential operations

» Choosing a data structure for a project then
becomes:
- ldentify the operations needed

- |dentify the abstract data type that most efficient
supports those operations

» Goal: that you understand several basic

Common ADTs

» Array List
» Linked List
» Stack

» Queue

» Set

» Map

Implementations for all of
these are provided by the
in the

package.

Array Lists and Linked Lists

Operations Array List Linked List
Provided Efficiency Efficiency

Random access O(1) O(n)
Add/remove item O(n) (do you O(1) if you are
see why?) “at” the item

& Ql.2

Stacks

» A last-in, first-out (LIFO) data structure

» Real-world stacks
- Plate dispensers in the cafeteria
- Pancakes!

» Some uses:

> Tracking paths through a maze
> Providing “unlimited undo” in an application

Implemented by

Operations Efficiency
Provided

Push item 0o(1) and

Java

Pop item O(1)

\ AN
b \ ‘,'.‘-.._
& W\

Queues

» A first-in, first-out (FIFO) data structure

» Real-world queues
- Waiting line at the BMV
> Character on Star Trek TNG
» Some uses:
- Scheduling access to shared resource (e.g., printer)

Operations Efficiency
Provided

Enqueue item O(1) and

Implemented by

Dequeue item 0(1) in Java

\ Q4

Sets

» Unordered collections without duplicates

» Real-world sets

- Students
> Collectibles

» Some uses:
- Quickly checking if an item is in a collection

Operations | Hashset | Treeset

Add/remove item O(1) O(lg n)
Contains? O(1) O(I% n)

Maps

» Associate keys with values

» Real-world “maps”
> Dictionary
> Phone book

» Some uses:

- Associating student ID with transcript
- Associating name with high scores

Operations | HashMap | _TreeMap _

Insert key-value pair O(1)

Look up value for key O(1)
- /

Y\§ Can hog space

O(lg n)
O(lg n)

Sorts items by key!

Q6

Outline of today’s session

» Algorithm analysis, review
» Recursion, review

» Recursion, making it efficient
» Data structures, how to choose

» Implementation of Linked Lists - part of your
final exam!

