
Analysis of Algorithms continued

Recursion

 On Capstone Project?
◦ Have your networking spike solution completed by yesterday!

 Get my help (outside of class, make an appointment) as needed

◦ Cycle 3 ends tomorrow! Ask in class if you want an extension.

◦ About 30 minutes today to work on Capstone.

 On Exam 2?
◦ www.rose-hulman.edu/class/csse/csse220/200930/Projects/Exam2/instructions.htm

◦ Take-home.

◦ Open everything except human resources.

◦ Released Wednesday 6 a.m. Complete by Friday 6 a.m.

◦ Designed to take about 90 minutes, you may take up to 3 hours

◦ All on-the-computer.

 On anything?
Re Exam 1:

• Bad news: I have not graded all of yours.

• Good news: I will add 10 points (of 100) to your score.

50 points if I don’t have it graded by Thursday!

http://www.rose-hulman.edu/class/csse/csse220/200930/Projects/Exam2/instructions.htm
http://www.rose-hulman.edu/class/csse/csse220/200930/Projects/Exam2/instructions.htm
http://www.rose-hulman.edu/class/csse/csse220/200930/Projects/Exam2/instructions.htm

 Algorithm analysis, continued
◦ Review: Definition of big-Oh

◦ Applications of big-Oh:

 Loops

 Search

 Binary search (iterative implementation)

 Sort

 Insertion Sort

 Recursion

 Work on Capstone

 Formal:
◦ We say that f(n) is O(g(n)) if and only if

◦ there exist constants c and n0 such that

◦ for every n ≥ n0 we have

◦ f(n) ≤ c × g(n)

 Informal:
◦ f(n) is roughly

proportional to g(n),
for large n

 Loop 5: n is size of input

int sum = 0;

for (int k = 0; k < n; ++k) {

sum += k * k * k * k;

}

for (int k = 0; k < n; ++k) {

sum += k * k * k * k;

}

Run-time is

O(_____)?

Answer:

O(n)

So two principles:

1. Loop followed by loop: take bigger big-Oh

2. Loop inside loop: multiply big-Oh’s

int left = 0; int right = a.length; int middle;

while (left <= right) {

middle = (left + right) / 2;

int comparison = a[middle].compareTo(soughtItem);

if (comparison == 0) {

return middle;

} else if (comparison > 0) {

right = middle – 1;

} else {

left = middle + 1;

}

}

return NOT_FOUND;

Input size is n, which is:

Worst-case run-time is O(_____)?

Best-case run-time is O(_____)?

Average-case run-time is O(_____)?

Answer: length of array

Answer: O(log n)

Answer: O(1)

Answer: O(log n)

For worst &

average-case,

how big a gain

is this over

linear search?

Try some

numbers!

Average case

is not obvious

and depends

on the input

distribution.

for (int k = 1; k < a.length; ++k) {

insert(a, k);

}

// Inserts a[k] into its correct place in the given array.

// Precondition: The given array is SORTED from indices 0 to k–1, inclusive.

// Postcondition: The given array is SORTED from indices 0 to k, inclusive.

public static int insert(Comparable<T>[] a, int k) {

int j;

Comparable<T> x = a[k];

while (int j = k – 1; j >= 0; --j) {

if (a[k].compareTo(a[j]) < 0) {

a[j + 1] = a[j];

} else {

break;

}

a[j + 1] = x;

}

for (int k = 1; k < a.length; ++k) {

insert(a, k);

}

// Inserts a[k] into its correct place in the given array.

// Precondition: The given array is SORTED from indices 0 to k–1, inclusive.

// Postcondition: The given array is SORTED from indices 0 to k, inclusive.

public static int smallest(Comparable<T>[] a, int k) {

int j;

Comparable<T> x = a[k];

while (int j = k – 1; j >= 0; --j) {

if (a[k].compareTo(a[j]) < 0) {

a[j + 1] = a[j];

} else {

break;

}

a[j + 1] = x;

}

Worst-case is ? Its run-time is ?

Best-case is ? Its run-time is ?

Average-case is ? [Nonsense!]

Average-case run-time is ?

Worst-case is backwards sorted

array. Its run-time is O(n2).

Best-case is sorted array. Its

run-time is O(n).

Average-case run-time, under

most reasonable input

distributions, is O(n2).

public static String stringCopy(String s) {

String result = "";

for (int i = 0; I < s.length(); i++)

result += s.charAt(i);

return result;

}

Input size is n, which is:

Run-time of EACH iteration of loop is:

Run-time of string copy is O(_____)?

Would your answer change if we used

character arrays instead of immutable strings?

Answer: length of string

Answer: O(n)

Answer: O(n2)

Yes, it would be O(n)

Reminder: Strings are immutable.

 Introduction to recursion
◦ Motivational example: Palindrome

◦ Basic idea summarized

◦ Examples:

 Recursive definitions:
 Fibonacci

 Ackermann’s

 Recursion algorithms:
 Binary search (recursive implementation)

 Merge sort

 A palindrome is a phrase that
reads the same forward or
backward
◦ We’ll ignore case, punctuation,

and spaces.

◦ Examples:

A man, a plan, a canal -- Panama!

Go hang a salami, I'm a lasagna hog.

 Add a recursive method to
Sentence for computing
whether Sentence is a
palindrome

Sentence

String text

String toString()
boolean equals()
boolean isPalindrome

 Factorial:

 Ackermann function:

Base Case

Recursive step

Q4

 Our isPalindrome() makes lots of new
Sentence objects

 We can make it better with a “recursive helper
method”

 public boolean isPalindrome() {
return isPalindrome(0, this.text.length() – 1);

}

 Always have a base case that doesn’t recurse

 Make sure recursive case always makes
progress, by solving a smaller problem

 You gotta believe
◦ Trust in the recursive solution

◦ Just consider one step at a time

 Describe basic searching & sorting algorithms:
◦ Search

 Linear search of an UNsorted array

 Linear seach of a sorted array (silly, but good example)

 Binary search of a sorted array

◦ Sort

 Selection sort

 Insertion sort

 Merge sort

 Determine the best and worst case inputs for each

 Derive the run-time efficiency of each, for best and
worst-case

 For an unsorted / unorganized array:

◦ Linear search is as good as anything:

 Go through the elements of the array, one by one

 Quit when you find the element (best-case = early) or
you get to the end of the array (worst-case)

◦ We’ll see mapping techniques for unsorted but
organized data

 For a sorted array:
◦ Linear search of a SORTED array:

 Go through the elements starting at the beginning

 Stop when either:

 You find the sought-for number, or

 You get past where the sought-for number would be

◦ But binary search (next slide) is MUCH better

search(Comparable[] a, int start, int stop, Comparable sought) {

if (start > stop) {

return NOT_FOUND;

}

int middle = (left + right) / 2;

int comparison = a[middle].compareTo(sought);

if (comparison == 0) {

return middle;

} else if (comparison > 0) {

return search(a, 0, middle – 1, sought);

} else {

return search(a, middle + 1, stop, sought);

}

}

 Basic idea:
◦ Think of the list as having a sorted part (at the

beginning) and an unsorted part (the rest)

◦ Find the smallest number
in the unsorted part

◦ Exchange it with the element
at the beginning of the
unsorted part (making the
sorted part bigger and the
unsorted part smaller)

Repeat until
unsorted
part is
empty

 Basic idea:
◦ Think of the list as having a sorted part (at the

beginning) and an unsorted part (the rest)

◦ Get the first number in the
unsorted part

◦ Insert it into the correct
location in the sorted part,
moving larger values up
in the array to make room

Repeat until
unsorted
part is
empty

 Basic recursive idea:
◦ If list is length 0 or 1, then it’s already sorted

◦ Otherwise:

 Divide list into two halves

 Recursively sort the two halves

 Merge the sorted halves back together

 Use a recurrence relation again:
◦ Let T(n) denote the worst-case number of array

access to sort an array of length n

◦ Assume n is a power of 2 again, n = 2m,
for some m

 Or use tree-based sketch…

