
Analysis of Algorithms intro



 What is “goodness”?

 How to measure efficiency?
◦ Profiling, Big-Oh

 Big-Oh:
◦ Motivation

◦ Informal examples

◦ Informal definition

◦ Formal definition

 Mathematical

◦ Application:  examples

◦ Best, worst, average case



 Correct – meets specifications

 Easy to understand

 Easy to modify

 Easy to write

 Runs fast

 Uses reasonable set of resources
◦ Time

◦ Space (main memory)

◦ Hard-drive space

◦ Peripherals

◦ …



 What kinds of things should we measure?
◦ CPU time
◦ memory used
◦ disk transfers
◦ network bandwidth

 Mostly in this course, we focus on the first 
two, and especially on CPU time

 One way to measure CPU time:  profiling
◦ Run the program in a variety of situations / inputs

◦ Call System.currentTimeMillis()

 What are the problems with profiling?



 Results from profiling depend on:
◦ Power of machine you use

 CPU, RAM, etc

◦ State of machine you use

 What else is running?  How much RAM is available? …

◦ What inputs do you choose to run?

 Size of input

 Specific input



 Big-Oh is a mathematical definition that 
allows us to:
◦ Determine how fast a program is (in big-Oh terms)

◦ Share results with others in terms that are 
universally understood

 Features of big-Oh
◦ Allows paper-and-pencil analysis

◦ Is much easier / faster than profiling

◦ Is a function of the size of the input

◦ Focuses our attention on big inputs

◦ Is machine independent



for (int i=0; i < a.length; i++) {

if ( a[i].compareTo(soughtItem) > 0 )

return NOT_FOUND; // Explain why this is NOT cohesive.

// NOT_FOUND must be …? 

else if ( a[i].compareTo(soughtItem) == 0 )

return i;

}

return NOT_FOUND;

•What should we count?

•Best case, worst case, average case?

Q5



Does the following method actually create and return a copy of the 

string s?

public static String stringCopy(String s) {

String result = "";

for (int i=0; i<s.length(); i++)

result += s.charAt(i);

return result;

}

What can we say about the running time of the method?

(where N is the length of the string s)

What should we count?

How can we do the copy more efficiently?

Don’t be too quick to make assumptions 

when analyzing an algorithm!

Q6



Always code as if the guy who 
ends up maintaining your code 
will be a violent psychopath 
who knows where you live. 

--Martin Golding



Figure 5.1
Running times for small inputs

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss      © 2002  Addison Wesley



Figure 5.2
Running times for moderate inputs

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss      © 2002  Addison Wesley



Figure 5.3
Functions in order of increasing growth rate

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss      © 2002  Addison Wesley

a.k.a "log linear"



 We only really care what happens when N 
(the size of a problem) gets large

 Is the function basically linear,  quadratic, 
etc. ?

 For example, when n is large, the difference 
between n2 and n2 – 3 is negligible



 Run-time of the algorithm of interest on a 
worst-case input of size n is:
◦ at most a constant times blah, for large n

 Example:  run-time of the linear search 
algorithm on a worst-case input of size n is:
◦ O(n)

 Alternatives to:
◦ Run-time:  space required, …

◦ Algorithm of interest:  Problem of interest

◦ Worst-case input:  Average-case, best-case

◦ At most:  At least => Ω and “exactly” (i.e. one 
constant for at least and another for at most) => Θ



≥In this course, 

we won't be so 

formal . We'll 

just say that 

f(N) is O(g(N) 

means that f(n) 

is eventually 

smaller than a 

constant times 

g(n).

Q7

there exists a c such that

for all n >= n0



≥



 f(N) is O(g(N)) if there is a constant c such 
that for sufficiently large N, f(N) ≤ cg(N)
◦ Informally, as N gets large the growth rate of f is 

bounded above by the growth rate of g

 f(N) is Ω(g(N)) if there is a constant c such 
that for sufficiently large N, f(N) ≥ cg(N)
◦ Informally, as N gets large the growth rate of f is 

bounded below by the growth rate of g

 f(N) is  Θ(g(N)) if f(N) is O(g(n)) and f(N) is Ω(g(N))

 Informally, as N gets large the growth rate of f is the 
same as the growth rate of g



 consider the limit

 What does it say about asymptotics if this limit is 
zero, nonzero, infinite?

 We could say that knowing the limit is a sufficient 
but not necessary condition for recognizing big-oh 
relationships.

 It will be all we need for all examples in this course.

)(

)(
lim

ng

nf

n

Q8



1. N and N2 

2. N2 + 3N + 2 and N2

3. N + sin(N) and N 
4. log N and N  
5. N log N and N2

6. Na and Nn

7. aN and bN (a < b)
8. logaN and logbN (a < b)
9. N! and NN

Q9



 Give tightest bound you can
◦ Saying that  3N+2 is O(N3) is true, but not as useful as 

saying it’s O(N)   [What about Θ(N3) ?]

 Simplify:
◦ You could say:
◦ 3n+2 is O(5n-3log(n) + 17)
◦ and it would be technically correct…
◦ It would also be poor taste … and put me in a bad mood.

 But… if I ask “true or false: 3n+2 is O(n3)”, 
what’s the answer?
◦ True! 
◦ There may be “trick” questions like this on assignments and 

exams. 
◦ But they aren’t really tricks, just following the big-Oh 

definition!



 Sorting and searching
◦ Why we study these

 See project:  SortingAndSearching
◦ Counting:  Loops


