CSSE 220 Day 27

Analysis of Algorithms intro

Program “goodness”

» What is “goodness™?

» How to measure efficiency?
> Profiling, Big-Oh

» Big-Oh:
> Motivation

Informal examples

Informal definition

Formal definition

- Mathematical

Application: examples

Best, worst, average case

(0]

o

(0]

(0]

o]

What makes a program “good”

» Correct - meets specifications
» Easy to understand

» Easy to modify

» Easy to write

» Runs fast

» Uses reasonable set of resources
> Time
> Space (main memory)
- Hard-drive space
> Peripherals

(0]

Measuring program effciency

» What kinds of things should we measure?
- CPU time
> memory used
- disk transfers
- network bandwidth

» Mostly in this course, we focus on the first
two, and especially on CPU time

» One way to measure CPU time: profiling
- Run the program in a variety of situations / inputs

- Call System.currentTimeMillis ()

» What are the problems with profiling?

Big-Oh motivation: why profiling
is not enough

» Results from profiling depend on:
- Power of machine you use
- CPU, RAM, etc
- State of machine you use
- What else is running? How much RAM is available? ...
- What inputs do you choose to run?
- Size of input
- Specific input

Big-Oh motivation: what it
provides

» Big-Oh is a mathematical definition that
allows us to:
- Determine how fast a program is (in big—Oh terms)
- Share results with others in terms that are

universally understood

» Features of big-Oh

Allows paper-and-pencil analysis

Is much easier / faster than profiling

Is a function of the size of the input

Focuses our attention on big inputs

Is machine independent

o

(0]

o

(0]

o

Familiar example:
Linear search of a sorted array of Comparable items

for (int i=0; i < a.length; i++) {
if (a[i].compareTo (soughtItem) > 0)
return NOT FOUND; // Explain why this is NOT cohesive.
// NOT_ FOUND must be ..7?

else if (a[i].compareTo (soughtItem) == 0)
return i;

}
return NOT_FOUND;

\What should we count?
Best case, worst case, average case?

Q5

Another algorithm analysis example

Does the following method actually create and return a copy of the
string s?
What can we say about the running time of the method?
(where N is the length of the string s)
What should we count?

public static String stringCopy(String s) {
String result = "";
for (int i=0; i<s.length(); i++)
result += s.charAt(i);
return result;
} Don’t betoo quick to make assumptions

when analyzing an algorithm!
How can we do the copy more efficiently?

Q6

Interlude

» Always code as if the guy who
ends up maintaining your code
will be a violent psychopath
who knows where you live.

—-Martin Golding

Figure 5.1

Running times for small inputs

10 | | | | |
Linear
O(Nlog N)
8T Quadratic 7
Cubic

Running Time (milliseconds)

0 | ! | | | | | | |
20 30 40 50 60 70 80 90 100

Input Size (N)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss ~ © 2002 Addison Wesley

Figure 5.2

Running times for moderate inputs

1 [I | |

Linear

O(Nlog N) .
Quadratic

Cubic

0.8

0.6

0.4

Running Time (seconds)

0.2

|

1000

| t i I I I | |
2000 3000 4000 5000 6000 7000 8000 9000 10000
Input Size (N)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss ~ © 2002 Addison Wesley

Figure 5.3

Functions in order of increasing growth rate

FUNCTION NAME

¢ Constant

log N Logarithmic

log2N Log-squared

N Linear

NlogN N log N a.k.a "log linear"
NZ Quadratic

N? Cubic

2N Exponential

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss ~ © 2002 Addison Wesley

Asymptotic analysis

» We only really care what happens when N
(the size of a problem) gets large

» Is the function basically linear, quadratic,
etc. ?

» For example, when n is large, the difference
between n? and n? - 3 is negligible

Informal definition of big-Oh
As applied to run-time analysis

» Run-time of the algorithm of interest on a
worst-case input of size n is:
- at most a constant times b/ah, for large n

» Example: run-time of the linear search
algorithm on a worst-case input of size n is:
> O(n)

» Alternatives to:
- Run-time: space required, ...
> Algorithm of interest: Problem of interest

- Worst-case input: Average-case, best-case

- At most: At least => () and “exactly” (i.e. one
eQetant for at least and another for at most) => O

In this course,
we won't be so
formal . We'll
just say that
f(N) is O(g(N)
means that f(n)
IS eventually
smaller than a
constant times

a(n).

* The “Big-Oh™ Notation
- given functions f{n) and g(»n), we say that
i) 1s ﬂ{g{!?}} it and Dl]]}a’ If there exists a ¢ such that
fin)y<cg(n)forn=zn, foraln>=no
- ¢ and ng are constants, f{#n) and g(n) are functions
over non-negative integers

cefny

Funning Time

Q7

Input Size

« Simple Rule: Drop lower order terms and constant
factors.

- Tn-31s On)
- 8n?log n + 5k + n is O(nlog n)

« Special classes of algorithms:

- logarithmic: O(log n)

- linear O(n)

- quadratic G{J?E}

- polynomial O(n*), k> 1
- exponential O(a™"y. n= 1

« “Relatives™ of the Big-Oh
— Q)(f{n)): Big Omega

— O(f(n)): Big Theta
W -

Recap: O, Q, ©

» f(N) is O(g(N)) if there is a constant c such
that for sufficiently large N, f(N) < cg(N)
- Informally, as N gets large the growth rate of f is
bounded above by the growth rate of g
» f(N) is Q(g(N)) if there is a constant c such
that for sufficiently large N, f(N) > cg(N)

- Informally, as N gets large the growth rate of f is
bounded below by the growth rate of g

» f(N) is O(g(N)) if f(N) is O(g(n)) and f(N) is Q(g(N))

» Informally, as N gets large the growth rate of f is the
same as the growth rate of g

Limits and asymptotics

consider the limit Iim f (r)

n—o0 3(N)

What does it say about asymptotics if this limit is
zero, nonzero, infinite?

We could say that knowing the limit is a sufficient

but not necessary condition for recognizing big-oh
relationships.

It will be all we need for all examples in this course.

Q8

Apply this limit property to the
following pairs of functions

N and N2

N2 + 3N + 2 and N?

N + sin(N) and N

log N and N

N log N and N

N2 and N°

aN and bN (a < b)

log,N and log,N (a < b)
N! and NNV

e e

Q9

Big-Oh Style

» Give tightest bound you can

- Saying that 3N+2 is O(N3) is true, but not as useful as
saying it’s O(N) [What about O(N3) ?]

» Simplify:
> You could say:
> 3n+2 is O(5n-3log(n) + 17)
- and it would be technically correct...
> It would also be poor taste ... and put me in a bad mood.

» But... if | ask “true or false: 3n+2 is O(n3)”,
what’s the answer?
o True!

> There may be “trick” questions like this on assignments and
exams.

> But they aren’t really tricks, just following the big-Oh
~dgfinition!

Examples / practice

» Sorting and searching
- Why we study these

» See project: SortingAndSearching
- Counting: Loops

