Exceptions

» Used to signal that something went wrong:
o throw new EOFException(“Uneven number of ints”);

» Can be caught by exception handler
- Recovers from error
- Or exits gracefully

P

A Checkered Past

» Java has two sorts of exceptions

» Checked exceptions: compiler makes sure
that calling code doesn’t ignore the problem
if it occurs.

- Used for expected problems

» Unchecked exceptions: compiler lets us
ignore these if we want

- Used for fatal or avoidable problems

c_Are subclasses of RunTimeExceptionor Error

Hierarchy of Exception Classes Throwabe
Error Exception
| | 1 1
Classhot CloneNot Runtime
I0Exception Found Supported Esreption
Exception Exception R
A 4
. Arithmetic
B prien Exception
__ FileNotFound L ClassCast
Exception Exception
MalformadURL LUl e Numbe rFormat
— 3 = Argument =l 3
Exception - Exception
Exception
__ UnknownHost L ITlegalState
Exception Exception
IndexOut ArrayIndexdiut
= OfBounds == OfBounds
Exception Exception
NoSuch InputMismatch
= E'Iemm:lt ! Exception
Exception
| NullPzinter

Exception

Figure 1 The Hierarchy of Exception Classes

A Tale of Two (and a half) Choices

» Dealing with checked exceptions

- Can propagate the exception

- Just declare that our method will pass any exceptions
along

- public void loadGameState() throws IOException
- Used when our code isn’t able to rectify the problem

> Can handle the exception
- Used when our code can rectify the problem

> Can do both

- Do what we can to handle the exception, and then
throw the same (or a different) exception

Handling Exceptions

» Use try-catch statement:

o try {
// potentially “exceptional’” code

} catch (ExceptionType var) {| |Can :cepeat this
- part Tor as many
// handle exception e
}‘ exception types as
» Related, try-finally for clean up: youneed.
o try {
// code that requires ‘“clean up”
+ finally {

// runs even i1f exception occurred

-

An example of try/catch

@Te=t
pubhlic void testBigRationalbBigIntegerBigInteger () |
try |
Ff Test 1: try to construct & BigRational whose denominator is =ero.
new BigRational (new BiglInteger ("7"), new BigInteger ("O7)]);

fFail("Constructor did not throw ArithmeticException when denominator was zero™)
¥y catch [(ArithwmeticException exception) |
ff Test 1 succeeded if it gets here
+ catch (Exception exception)
exception.print3tackTracel(])
fail("Constructor threw a " + exXception.to3tring()
+ " when it zhould have thrown an ArithmeticException®™):

try |
ff Test Z: construct & BigRational whose denominator is NOT =zero.
new BigRational (new Biglnteger ("O"), new BigInteger ("771):;

¥y catch [(ArithwmeticException exception) |
fail("Constructor threw ArithmeticException when denominator was NOT zero™);
+ catch (Exception exception) |
exception.print3tackTrace() ;
fail("™Constructor threw a " + eXception.to3tring()
+ " when it should not have thrown any Exception®™):

h
Ff Test 2 succeeded if it gets here

Exceptions - Summary

» Can be thrown to signal that something went wrong:
- throw new EOFException(‘“Uneven number of ints”);

» Can be propagated to the calling method:
o public void loadGameState() throws IOException

» Can be caught by exception handler
- Recovers from error
- Or exits gracefully
- try {
// potentially “exceptional” code

} catch (ExceptionType var) {
// handle exception

;

