Inheritance - what is it?

» Sometimes a new class is a special case of the
concept represented by another
- A SavingsAccount /s-a BankAccount
- An Employee /s-a Person

» Can extend existing class, changing just what we
need

» The new class inherits Object
from the existing one:
- all methods

- all fields
» Can add new fields/methods Mi

» Or override existing methods

‘SavingsAccount\ ‘ CheckingAccount “

public class BankAccount { Subclasses will inherit this field even
private doubl e bal ance; <& [Figlelie]qdala\Aes gl alerae[IZ=ladlAElad<i ST

« Subclasses inherit a// fields
publ i ¢ BankAccount () {

t hi s(0. 00); < Calls the one-parameter constructor
}
publ i ¢ BankAccount (doubl e initial Bal ance) {

this. balance = initial Bal ance;
}

public void deposit(double anmount) {
t hi s. bal ance += anount;

}
public void w thdraw doubl e anount) {
t hi s. bal ance -= anpbunt;
} protected means that

subclasses and classes
protected final double getBal ance() { Pliig= SRl cEq el el

return this. bal ance; access it.
} * public makes more sense here,

final means that subclasses are not
~ permitted to override this method

but | have made it protected just
so that you can see an example

®* We want to count on it working just like this

public class Savi ngsAccount extends BankAccount {

. . Fields:
private double interestRate;, <€ [et .
« DON’T put your own
publ i ¢ Savi ngsAccount (doubl e rate) { balance field here!
. . e Adds interestRate field
this.interestRate = rate; \
}

Implicit super(); that calls

superclass’ no-parameter constructor

publ i ¢ Savi ngsAccount (doubl e rate, double initBal ance) {

super (i ni tBal ance) ; “——_\E superclass’ constructor
this.interestRate = rate; « Must be first statement in

} constructor

Adds this method

public void addlnterest() { e
doubl e i nterest;
| nterest = this.getBal ance()
* this.interestRate / 100;

t hi s. deposit(interest); (\‘\ Calls inherited getBalance
and deposit methods

to those inherited

publ i c cl ass Checki ngAccount extends BankAccount {
private int transacti onCount;

publ i ¢ Checki ngAccount (doubl e initial Bal ance) {
super (i nitial Bal ance);
this.transacti onCount = O;

}
@verride Overrides inherited withdraw
public void withdraw) { method and also calls inherited
super . wi t hdr aw() : withdraw method
.) ®* The class would have, but | have not shown,
++ this.transacti onCount; a similar deposit method.
}

public void runThi sOnFirst DayOf Mont h) {
i f (this.transactionCount > 100) {

super. w t hdraw(10. 00); This (rather silly) checking account
} charges a $10 fee if you do more
this.transacti onCount = 0; [Pl N0l aETaEadlolalla=Eaglelidy
* Note call to superclass’ withdraw

Interfaces vs. Inheritance

» class ClickHandler implements MouselListener

> ClickHandler promises to implement all the

methods of MouseListener\L_ e e

» class CheckingAccount extends BankAccount

> CheckingAccount inherits all the fields and methods

of BankAccount \\—
For

implementation
code reuse

Hide implementation, use interface type

o Consider:

public void noveTo(Poi nt 2D poi nt ToMbveTo)

> Poi nt 2Dis an /nterface that includes the methods get X() and
get Y()

> Poi nt 2D has implementations that include Poi nt 2D. Doubl e and
Poi nt and Poi nt 2D. Fl oat

- Your code does not care which implementation it is; it works with any of
them.

- Your code needs only to know that you can get the X and Y components of
poi nt ToMoveTo by using the methods promised by the Poi nt 2D interface,
e.g. poi nt ToMoveTo. get X()

Use Getters and Setters
into using a Poi nt 2D. Doubl e

In superclass: prot ect ed Poi nt 2D. Doubl e | ocati on;
this.location = new Point2D. Double(..., ...);
In subclass: ... this.location.x = this.location.x + ...;

In superclass:
private Point2D | ocati on;
this.location = new Point2D. Double(..., ...);

protected final Point2D getlLocation() {

return this.location;
Good: allows superclass to change

the implementation of the Ball’s location.

protected final void setlLocation(Point2D |ocation) {
this.location = |ocation;

Eclipse types most of this code for you!
In subclass:

thi s. setLocati on(new Poi nt 2D. Doubl e(
this.getLocation().getX() + ...,
this.getlLocation().getY() + ...);

