
Inheritance
Abstract Classes

Check out Inheritance from SVN

 Sometimes a new class is a
special case of the concept
represented by another

 Can “borrow” from an existing
class, changing just what we
need

 The new class inherits from
the existing one:
◦ all methods
◦ all fields

 Can add new fields/methods
 Or override existing methods

Q1

 class SavingsAccount extends BankAccount
◦ adds interest earning, while keeping other traits

 class Employee extends Person
◦ adds pay info. and methods, keeps other traits

 class Manager extends Employee
◦ adds info. about employees managed, changes pay

mechanism, keeps other traits

 class SavingsAccount extends BankAccount {
// added fields
// added methods

}

 Say “SavingsAccount is a BankAccount”

 Superclass: BankAccount

 Subclass: SavingsAccount

Q2

 A Sophomore IS-A Student IS-A Person.
 A Continent IS-A LandMass
 An HPCompaqNW8440 IS-A Laptop Computer
 An iPod IS-A MP3Player
 A Square IS-A Rectangle

 It is not true that a Continent IS-A Country or
vice-versa.

 Instead, we say that a Continent HAS-A Country.

Q3

 String extends Object
 ArrayList extends AbstractCollection
 IOException extends Exception
 BigInteger extends Number
 BufferedReader extends Reader
 JButton extends JComponent
 MouseListener extends EventListener
 JFrame extends Window

The “superest”
class in Java

Still means
“is a”

Solid line
shows

inheritance

Q4

 class ClickHandler implements MouseListener

◦ ClickHandler promises to implement all the
methods of MouseListener

 class CheckingAccount extends BankAccount

◦ CheckingAccount inherits (or overrides) all the
methods of BankAccount

For client code
reuse

For
implementation

code reuse

Still more
subclasses of
JComponent:

JColorChooser
JComboBox

JFileChooser
JList

JMenuBar
JProgressBar

JSrollBar
JScrollPane

JSLider
JSplitPAne

JTabbedPane
JTable
JTree

Going up (in the hierarchy)!
JComponent extends Container

Container extends Component
Component extends Object

 Inherit methods unchanged
 No additional code needed in subclass

 Override methods
◦ Declare a new method with same signature to use

instead of superclass method

 Partially Override methods
◦ call super.sameMethod(), and also add some other code.

 Add entirely new methods not in superclass

Q5

 ALWAYS inherit all fields unchanged

 Can add entirely new fields not in superclass

DANGER! Don’t use
the same name as a

superclass field!

Q6

 Calling superclass method:
◦ super.methodName(args);

 Calling superclass constructor:
◦ super(args);

Must be the first line of
the subclass constructor.

If not present, then
super() is called.

Q7

 Halfway between superclasses and interfaces
◦ Like regular superclass:
 Provide implementation of some methods
◦ Like interfaces
 Just provide signatures and docs of other methods
 Can’t be instantiated

 Example:
◦ public abstract class BankAccount {

/** documentation here */
public abstract void deductFees();
…

}

Elided methods as before

 Review
◦ public—any code can see it
◦ private—only the class itself can see it

 Others
◦ default (i.e., no modifier)—only code

in the same package can see it
 good choice for classes
◦ protected—like default, but

subclasses also have access
 sometimes useful for helper methods

Fields should
always be
private,
except

possibly for
final fields.

Use a
protected
accessor if

your subclass
needs access
to a field in a

superclass

Q9

	CSSE 220 Day 6
	Questions?
	Inheritance
	Code Examples
	Notation and Terminology
	Other natural examples
	Examples From the Java API Classes
	Inheritance in UML
	Interfaces vs. Inheritance
	Inheritance Run Amok?
	With Methods, Subclasses can:
	With Fields, Subclasses:
	Super Calls
	Abstract Classes
	Access Modifiers

