
 What you already know about Java
◦ From your background in C and Python

 Reading and using an API
◦ Javadoc
◦ The String class

 Implementing a class
◦ Implementing an interface
◦ Using documented stubs before coding
◦ Writing JUnit tests before coding

CSSE 220 Object-Oriented Software Development

Questions on HelloWorldAgain?
On anything?

 Object-oriented
 Concepts: Inheritance, Interfaces, …
 Design: CRC cards, UML class diagrams, …

 Extreme Programming Processes
 Documented stubs, Test-first, Pair programming, …

 Data Structures
◦ Introduce algorithm efficiency analysis (big O)

 Reading and using APIs
 Graphical User Interfaces (GUIs) and lots more!

 Variables
◦ Declaring, assigning
◦ Primitive types
◦ Printing, reading from the console

 Objects
◦ Dot notation
◦ Constructing with new

 Control structures
◦ for, while, if, …

 Methods
◦ Defining
◦ Parameters/arguments

 Classes
◦ Fields
◦ Methods

Details on each of the above in the next set of slides.

 Declaring, assigning

int xPosition;
xPosition = 0;
int yPosition = 40;

double r, s;
r = s;

 Primitive types:
◦ int byte short long
◦ double float
◦ char
◦ boolean
 true false

Type / Name pattern

Java compiler flags this mistake (C doesn’t!)

Sizes are specified in Java
(C is generally platform-specific).
Details on p. 135 of Big Java

System.out.println(x);

System.out.println(“The value is ” + x);
System.out.printf(“The value is %d”, x);

Scanner input = new Scanner(System.in);
System.out.print(“Enter an integer: “);
int quantity = input.nextInt();

String concatenation.
Very handy!

Using the Scanner class requires that you
import it. Eclipse offers a Quick Fix for
imports that is almost always right, so I will
say no more about imports.

 Works just like Python:
◦ object.method(argument, …)

 Java Example:

Implicit
argument

Explicit
arguments

String name = "Bob Forapples";
PrintStream printer = System.out;

int nameLen = name.length();
printer.printf("'%s' has %d characters", name, nameLen);

Q4

 Example:
Rectangle box = new Rectangle(5,10,20,30)

 Several steps are happening here:
1. Java reserves space for a Rectangle object
2. Rectangle’s constructor runs, filling in slots in

object
3. Java reserves a variable named box
4. box is set to refer to the object

left, top, width, height

Q7

Note keyword new

 Variables of number type store values
 Variables of class type store references
◦ A reference is like a pointer in C, except
 Java keeps us from screwing up
 No & and * to worry about

(and the people say, “Amen”)
 Consider:

1. int x = 10;
2. int y = 20;
3. Rectangle box = new Rectangle(x,y,5,5);

Q6

 Actual value for number types
 Reference value for object types
◦ The actual object is not copied
◦ The reference value (“the pointer”) is copied

 Consider:
1. int x = 10;
2. int y = x;
3. y = 20;

4. Rectangle box = new Rectangle(5,6,7,8);
5. Rectangle box2 = box;
6. box2.translate(4,4);

Q7-10

for (int k = 0; k < 100; ++k) {
...

}

if (x == y) {
...

} else {
...

}

while (true) {
...
if (...) {

break;
}

}

++k;
k++;
k = k + 1;

Three ways to do the same
thing, in this context.

API Documentation,
Docs in Eclipse,
Writing your own Docs

 What’s an API?
◦ Application Programming Interface

 The Java API on-line and on your computer
◦ Google for: java api documentation 6
◦ Or go to: http://java.sun.com/javase/6/docs/api/
◦ C:\Program Files\Java\jdk1.6.0_12\docs\api\index.html

 Find the String class documentation:
◦ Click java.lang in the top-left pane
◦ Then click String in the bottom-left pane

Q1,2

http://java.sun.com/javase/6/docs/api/�

 Setting up Java API documentation in Eclipse
◦ Should be done already, but if the next steps don’t

work for you, we’ll fix that
 Using the API documentation in Eclipse
◦ Hover text
◦ Open external documentation (Shift-F2)

 Written in special comments: /** … */
 Can come before:
◦ Class declarations
◦ Field declarations
◦ Method declarations

 Eclipse is your friend!
◦ It will generate javadoc comments automatically
◦ It will notice when you start typing a javadoc

comment

/**
* This class demonstrates unit testing
* and asks you to use the Java API
* documentation to find methods to solve
* problems using Strings.
*
* @author Curt Clifton.
* Created Sep 9, 2008.
*/
public class MoreWordGames { … }

Description of
class

@author Tag
followed by author

name and date

/**
* Converts the original string to a
* string representing shouting.
*
* @param input the original string
* @return input in ALL UPPER CASE
*/
static String shout(String input) {

return input.toUpperCase();
}

Description of method,
usually starts with a verb.

@param tag
followed by
parameter
name and
(optional)

description.
Repeat for each

parameter.

@result tag followed by
description of result. Omit

for void methods.

 Don’t try to memorize the Java libraries
◦ Nearly 9000 classes and packages!
◦ You’ll learn them over time

 Get in the habit of writing the javadocs before
implementing the methods
◦ It will help you think before doing, a vital software

development skill
◦ This is called programming with documented stubs
◦ I’ll try to model this. If I don’t, call me on it!

Test-driven Development,
unit testing and JUnit

 Writing code to test other code
 Focused on testing individual pieces of code (units)

in isolation
◦ Individual methods
◦ Individual objects

 Why would software engineers do unit testing?
◦ Get code right
◦ Keep code right as changes are made
◦ Confirm our understanding of the method specification

before implementing it
◦ Provide documentation
◦ Confirm pieces in isolation so we don’t have to worry

about them during integration (when we put code together)
Q3,4

 JUnit is a unit testing framework
◦ A framework is a collection of classes to be used in

another program
◦ Does much of the work for us!

 JUnit was written by
◦ Erich Gamma
◦ Kent Beck

 Open-source software
 Now used by millions of Java developers

Q5

 Test “boundary conditions”
◦ Intersection points: -40℃ == -40℉
◦ Zero values: 0℃ == 32℉
◦ Empty strings

 Test known values: 100℃ == 212℉
◦ But not too many

 Tests things that might go wrong
◦ Unexpected user input: “zero” when 0 is expected

 Vary things that are “important” to the code
◦ String length if method depends on it
◦ String case if method manipulates that

/**
* A StringTransformable object can transform one String into another String.
*
* @author David Mutchler, based on an idea from Lynn Stein
* in her Rethinking CS 101 project.
* Created Mar 12, 2009.
*/
public interface StringTransformable {

/**
* Transform the given String into another String.
*
* @param stringToTransform The String to transform
* @return The transformed String
*/
public String transform(String stringToTransform);

}

Someone else’s code My codeInterface

	Session 2
	CSSE 220 in a Nutshell
	What you already know about Java�(from your background in C and Python)
	Variables  similar to C
	Printing values on the console�Reading values from the console
	Using Objects and Methods
	Constructing Objects
	What Do Variables Really Store?
	Assignment Copies Values
	Control structures – similar to C
	Java Documentation
	Recap: Java API Documentation
	Java Documentation in Eclipse
	Writing Javadocs
	Example Javadoc for a Class
	Example Javadoc for a Method
	Javadocs: Key Points
	Writing Code to �Test Your Code
	Unit Testing
	Unit Testing With JUnit
	Interesting Tests
	Implementing an interface

