
Generics

Course Evaluations

Exam Review





Another way to make code 
more re-useful



 Collections just stored Objects
◦ Better than creating different collection classes for 

each kind of object to be stored

◦ Could put anything in them because of 
polymorphism

 Used casts to get types right:
◦ ArrayList songs = new ArrayList();

songs.add(new Song(“Dawn Chorus”,“Modern English”));

…

Song s = (Song) songs.get(1);

◦ songs.add(new Artist(“A Flock of Seagulls”));

Song t = (Song) songs.get(2);

Q1



 Can define collections and other classes 
using type parameters
◦ ArrayList<Song> songs = new ArrayList<Song>();

songs.add(new Song(“Dawn Chorus”, “Modern English”));

…

Song s = songs.get(1); // no cast needed

◦ songs.add(new Artist(“A Flock of Seagulls”));

 Lets us use these classes:
◦ in a variety of circumstances

◦ with strong type checking

◦ without having to write lots of casts

Q2

compile-time 
error



 Create a doubly linked list

 Include min() and max() methods

 Use polymorphism rather than null checks for 
the start and end of the list

 Include fromArray() factory method

Q3



 Type parameters:
◦ class DLList<E>

 Bounds:
◦ class DLList<E extends Comparable>

◦ class DLList<E extends Comparable<E>>

◦ class DLList<E extends Comparable<? super E>>

 Generic methods:
◦ public static <T> void shuffle(T[] array)

Q4,5



Your chance to improve 
instruction, courses, and 
curricula.



 Exam is Monday, 6pm, G308

 Same format as previous exams, about the 
same length

 Comprehensive, but focused on Ch. 13-17 



oSimple recursion

oMutual recursion

oTime-space trade-offs

oBasic sorting algorithms

oSelection, insertion, 
merge, and quicksort

oEfficiency, best/worst 
case inputs

oBig-oh notation, 
estimating big-oh 
behavior of code

oFunction objects

o Linked-list 
implementation

oBasic data structure use 
and efficiency

oArrayList, LinkedList, 
Stack, Queue, 
HashSet, TreeSet, 
HashMap, TreeMap

oGenerics


