CSSE 220 Day 27

Linked List Implementation
Abstract Data Types
Data-structure-palooza

Checkout LinkedLists2 project from SVN

Questions

Data Structures Recap

» Efficient ways to store data based on how
we’ll use it

» The main theme for the last 1/6 of the course

» So far we’ve seen ArrayLists
- Fast addition to end of list
- Fast access to any existing position
> Slow inserts to and deletes from middle of list

Another List Data Structure

» What if we have to add/remove data from a
list frequently?

» LinkedL1sts support this:
- Fast insertion and removal of elements
- Once we know where they go
- Slow access to arbitrary elements

o

“random access”

LinkedList<E> Methods

» void addFirst(E element)
» void addLast(E element)
» E getFirst()

» E getlLast()

» E removeFirst()

» E removelLast()

» What about accessing the middle of the list?
o LinkedList<E> implements Iterable<E>

IIIII§§§iiii==!!-._

Accessing the Middle of a

LinkedList

<<interfaces=
lterable<E>

lterator<E= iterator()

LinkedList<E>

.

<<interfaces:=
lterator<E>

boolean hasMext()
E next()
void remaove()

<<interfaces=
Listiterator<E>

void add(E element)
boolean hasPrevious()
E previous()

An Insider’s View

forn\(Stringlsiinhhastng Iterator<String> iter =
// do something list.1terator();
¥
while (iter.hasNext()) {
String s = 1ter.next();
// do something

¥

Enhanced For Loop What Compiler Generates

Implementing LinkedList

» A simplified version, with just the essentials

» Won’t implement the java.util.List interface

» Will have the usual linked list behavior

- Fast insertion and removal of elements
- Once we know where they go
> Slow random access

Abstract Data Types (ADTs)

» Boil down data types (e.g., lists) to their
essential operations

» Choosing a data structure for a project then
becomes:
- ldentify the operations needed

- |dentify the abstract data type that most efficient
supports those operations

» Goal: that you understand several basic
abstract data types and when to use them

Common ADTs

» Array List
» Linked List
» Stack

» Queue

» Set

» Map

Implementations for all of
these are provided by the
in the

package.

Array Lists and Linked Lists

Operations Array List Linked List
Provided Efficiency Efficiency
Random access O(1) O(n)
Add/remove item O(n) O(1)

. Q

Stacks

» A last-in, first-out (LIFO) data structure

» Real-world stacks
- Plate dispensers in the cafeteria
- Pancakes!

» Some uses:

> Tracking paths through a maze
> Providing “unlimited undo” in an application

Implemented by

Operations Efficiency
Provided

Push item 0o(1) and

Java

Pop item O(1)

i

Queues

» A first-in, first-out (FIFO) data structure

» Real-world queues
- Waiting line at the BMV
> Character on Star Trek TNG
» Some uses:
- Scheduling access to shared resource (e.g., printer)

Operations Efficiency
Provided

Enque item O(1) and

Implemented by

Dequeue item 0(1) in Java

\ QI

Sets

» Unordered collections without duplicates

» Real-world sets
> Students
> Collectibles
» Some uses:
- Quickly checking if an item is in a collection
PODAM g

Add/remove item O(1) O(lg n)

Contains? O(1) O(I% n)

A\

Maps

» Associate keys with values

» Real-world “maps”
- Students
- Collectibles

» Some uses:

- Associating student ID with transcript
- Associating name with high scores

Operations | HashMap | _TreeMap _

Insert key-value pair O(1)

Look up value for key O(1)

\ Can hog space
\

O(lg n)
O(lg n)

Sorts items by key!

Ql

