
Sorting Wrap-up
Function Objects and the Comparator Interface

Linked Lists

Checkout LinkedList project from SVN

 We write f(n) = O(g(n)), and
say “f is big-Oh of g”

 if there exists positive constants c and n0 such that

 0 ≤ f(n) ≤ c g(n)
for all n > n0

 g is a ceiling on f

Q1

Shortcut: Take highest
order term in f and drop
the coefficient.

 Be able to describe basic sorting algorithms:
◦ Selection sort

◦ Insertion sort

◦ Merge sort

◦ Quicksort

 Know the run-time efficiency of each

 Know the best and worst case inputs for each

 Basic idea:
◦ Think of the list as having a sorted part (at the

beginning) and an unsorted part (the rest)

◦ Find the smallest number
in the unsorted part

◦ Move it to the end of the
sorted part (making the
sorted part bigger and the
unsorted part smaller)

Repeat until
unsorted part is
empty

Q2a

 Basic idea:
◦ Think of the list as having a sorted part (at the

beginning) and an unsorted part (the rest)

◦ Get the first number in the
unsorted part

◦ Insert it into the correct
location in the sorted part,
moving larger values up to
make room

Repeat until
unsorted part is
empty

Q2b

 Basic recursive idea:
◦ If list is length 0 or 1, then it’s already sorted

◦ Otherwise:

 Divide list into two halves

 Recursively sort the two halves

 Merge the sorted halves back together

 Let’s profile it…

 Use a recurrence relation again:
◦ Let T(n) denote the worst-case number of array

access to sort an array of length n

◦ Assume n is a power of 2 again, n = 2m,
for some m

 Or use tree-based sketch…

Q3,2c

 Basic recursive idea:
◦ If length is 0 or 1, then it’s already sorted

◦ Otherwise:

 Pick a “pivot”

 Shuffle the items around so all those less than the
pivot are to its left and greater are
to its right

 Recursively sort the two “partitions”

 Let’s profile it…

 Using recurrence relation involves some
seriously heavy lifting
◦ See CSSE/MA 473

 But we can sketch the idea using trees…

Q2d

That's nothing. I once lost my genetics, rocketry,
and stripping licenses in a single incident.

Another way of creating
reusable code

 Java libraries provide efficient sorting
algorithms
◦ Arrays.sort(…) and Collections.sort(…)

 But suppose we want to sort by something
other than the “natural order” given by

compareTo()

 Function Objects to the rescue!

 Objects defined to just “wrap up” functions so
we can pass them to other (library) code

 We’ve been using these for awhile now
◦ Can you think where?

 For sorting we can create a function object
that implements Comparator

Understanding the
engineering trade-offs when
storing data

 Efficient ways to store data based on how
we’ll use it

 The main theme for the last 1/6 of the course

 So far we’ve seen ArrayLists
◦ Fast addition to end of list

◦ Fast access to any existing position

◦ Slow inserts to and deletes from middle of list

Q4

 What if we have to add/remove data from a
list frequently?

 LinkedLists support this:
◦ Fast insertion and removal of elements

 Once we know where they go

◦ Slow access to arbitrary elements

Q5,6

 void addFirst(E element)

 void addLast(E element)

 E getFirst()

 E getLast()

 E removeFirst()

 E removeLast()

 What about the middle of the list?

◦ LinkedList<E> implements Iterable<E>

Enhanced For Loop What Compiler Generates

for (String s : list) {

// do something

}

Iterator<String> iter =

list.iterator();

while (iter.hasNext()) {

String s = iter.next();

// do something

}

 Implementing ArrayList and LinkedList

 A tour of some data structures
◦ Including one that will come in handy for storing a

dictionary!

