
Object-Oriented Design Recap,

Vector Graphics Assignment

No SVN checkout today

A practical technique

1. Discover classes based on
requirements

2. Determine responsibilities of
each class

3. Describe relationships between
classes

 Brainstorm a list of possible classes
◦ Anything that might work

◦ No squashing

 Prompts:
◦ Look for nouns

◦ Multiple objects are often created from each class
 so look for plural concepts

◦ Consider how much detail a concept requires:

 A lot? Probably a class

 Not much? Perhaps a primitive type

 Don’t expect to find them all  add as needed

Tired of hearing this yet?

1. Pick a responsibility of the program

2. Pick a class to carry out that responsibility
◦ Add that responsibility to the class’s card

3. Can that class carry out the responsibility by
itself?

◦ Yes  Return to step 1

◦ No 

 Decide which classes should help

 List them as collaborators on the first card

 Add additional responsibilities to the collaborators’
cards

 Spread the cards out on a table
◦ Or sticky notes on a whiteboard instead of cards

 Use a “token” to keep your place
◦ A quarter or a magnet

 Focus on high-level responsibilities
◦ Some say < 3 per card

 Keep it informal
◦ Rewrite cards if they get to sloppy

◦ Tear up mistakes

◦ Shuffle cards around to keep “friends” together

A team project to create a
scalable graphics program.

When JFrame’s and JPanel’s
defaults just don’t cut it.

 Answer: 5

 We use the two-argument version of add:

 JPanel p = new JPanel();

frame.add(p, BorderLayout.SOUTH);

 JFrame’s default LayoutManager
is a BorderLayout

 LayoutManager instances
tell the Java library how to
arrange components

 BorderLayout uses up to five
components

 Answer: arbitrarily many

 Additional components are added in
a line

 JPanel’s default LayoutManager
is a FlowLayout

 We can set the layout manager of a JPanel
manually if we don’t like the default:

JPanel panel = new JPanel();

panel.setLayout(new GridLayout(4,3));

panel.add(new JButton("1"));

panel.add(new JButton("2"));

panel.add(new JButton("3"));

panel.add(new JButton("4"));

// ...

panel.add(new JButton("0"));

panel.add(new JButton("#"));

frame.add(panel);

 A LayoutManager determines how components are
laid out within a container

• BorderLayout. When adding a component, you specify
center, north, south, east, or west for its location. (Default
for a JFrame.)

• FlowLayout: Components are placed left to right. When
a row is filled, start a new one. (Default for a JPanel.)

• GridLayout. All components same size, placed into a 2D
grid.

• Many others are available, including BoxLayout,
CardLayout, GridBagLayout, GroupLayout

• If you use the null for the LayoutManager, then you must
specify every location using coordinates

 More control, but it doesn’t resize automatically

 Chapter 18 of Big Java

 Swing Tutorial
◦ http://java.sun.com/docs/books/tutorial/ui/index.html

◦ Also linked from schedule

team11 team12

 Gardner

 Joe

 Steve

 Alice

 Cory

 Sam

Note your team
number; you’ll
need it for SVN

 Next steps:
• Verify SVN repository, check-

out project

• Exchange contact information

• Start work on first milestone

