
Object-Oriented Design

No SVN checkout today

Analysis

Design

Implementation

Testing

Deployment

Maintenance

Software
Development

 Standardized approaches intended to:
◦ Reduce costs

◦ Increase predictability of results

 Examples:
◦ Waterfall model

◦ Spiral model

◦ “Rational Unified Process”

 Do each stage to completion
 Then do the next stage

Pipe dream model?

Analysis

Design

Implementation

Testing

Deployment

 Repeat phases in a cycle

 Produce a prototype at end of each cycle

 Get early feedback, incorporate changes

 Schedule overruns
 Scope creep

Deployment

Prototype

 Like the spiral model with very short cycles

 Pioneered by Kent Beck

 One of several “agile” methodologies, focused
on building high quality software quickly

 Rather than focus on rigid process, XP
espouses 12 key practices…

 Realistic planning

 Small releases

 Shared metaphors

 Simplicity

 Testing

 Refactoring

 Pair programming

 Collective ownership

 Continuous integration

 40-hour week

 On-site customer

 Coding standards

When you see
opportunity to make

code better, do it

Use descriptive
names Q1

A practical technique

 We won’t use full-scale, formal
methodologies
◦ Those are in later SE courses

 We will practice a common object-oriented
design technique using CRC Cards

 Like any design technique,
the key to success is practice

1. Discover classes based on
requirements

2. Determine responsibilities of
each class

3. Describe relationships between
classes

Q2

 Brainstorm a list of possible classes
◦ Anything that might work

◦ No squashing

 Prompts:
◦ Look for nouns

◦ Multiple objects are often created from each class
 so look for plural concepts

◦ Consider how much detail a concept requires:

 A lot? Probably a class

 Not much? Perhaps a primitive type

 Don’t expect to find them all  add as needed

Tired of hearing this yet?

 Look for verbs in the requirements to identify
responsibilities of your system

 Which class handles the responsibility?

 Can use CRC Cards to discover this:

◦ Classes

◦ Responsibilities

◦ Collaborators

 Use one index card per class

Class name

CollaboratorsResponsibilities

Q3

1. Pick a responsibility of the program

2. Pick a class to carry out that responsibility
◦ Add that responsibility to the class’s card

3. Can that class carry out the responsibility by
itself?

◦ Yes  Return to step 1

◦ No 

 Decide which classes should help

 List them as collaborators on the first card

 Add additional responsibilities to the collaborators’
cards

 Spread the cards out on a table
◦ Or sticky notes on a whiteboard instead of cards

 Use a “token” to keep your place
◦ A quarter or a magnet

 Focus on high-level responsibilities
◦ Some say < 3 per card

 Keep it informal
◦ Rewrite cards if they get to sloppy

◦ Tear up mistakes

◦ Shuffle cards around to keep “friends” together

 Classes usually are related to their
collaborators

 Draw a UML class diagram showing how

 Common relationships:
◦ Inheritance: only when subclass is a special case

◦ Aggregation: when one class has a field that
references another class

◦ Dependency: like aggregation but transient, usually
for method parameters, “has a” temporarily

◦ Association: any other relationship, can label the
arrow, e.g., constructs

NEW!

 Finish BallWorlds with your partner

 Do Appointment Calendar design exercise
◦ You might want to try using Violet for drawing your

diagrams

Ask questions if you’re stuck!

