
Inheritance recap
Object: the superest class of all

Inheritance and text in GUIs

Check out MoreGUIness from SVN

A quick recap of last session

 Sometimes a new class is a
special case of the concept
represented by another

 Can “borrow” from an
existing class, changing just
what we need

 The new class inherits from
the existing one:
◦ all methods

◦ all instance fields

 class SavingsAccount extends BankAccount {

// added fields

// added methods

}

 Say “SavingsAccount is a BankAccount”

 Superclass: BankAccount

 Subclass: SavingsAccount

The “superest”
class in Java

Still means
“is a”

Solid line
shows

inheritance

 Inherit methods unchanged

 Override methods
◦ Declare a new method with same signature to use

instead of superclass method

 Add entirely new methods not in superclass

 ALWAYS inherit all fields unchanged

 Can add entirely new fields not in superclass

DANGER! Don’t use
the same name as a

superclass field!

 Calling superclass method:

◦ super.methodName(args);

 Calling superclass constructor:

◦ super(args);

Must be the first
line of the subclass

constructor

 public—any code can see it

 private—only the class itself can see it

 default (i.e., no modifier)—only code in the
same package can see it

 protected—like default, but subclasses also
have access

The superest class in Java

 Every class in Java inherits from Object

◦ Directly and explicitly:

 public class String extends Object {…}

◦ Directly and implicitly:

 class BankAccount {…}

◦ Indirectly:

 class SavingsAccount extends BankAccount {…}

Q1

 String toString()

 boolean equals(Object otherObject)

 Class getClass()

 Object clone()

 …

Often overridden

Often useful

Often dangerous!

Q2

 Return a concise, human-readable summary
of the object state

 Very useful because it’s called automatically:
◦ During string concatenation

◦ For printing

◦ In the debugger

 getClass().getName() comes in handy
here…

 Should return true when comparing two
objects of same type with same “meaning”

 How?
◦ Must check types—use instanceof

◦ Must compare state—use cast

 Example…

 Avoiding representation exposure:
◦ returning an object that lets other code muck with

our object’s state
public class Customer {

private String name;

private BankAccount acct;

…

public String getName() {

return this.name; //  OK!

}

public BankAccount getAccount() {

return this.account(); //  Rep. exposure!

}

}
Book says (controversiallly) to use

return (BankAccount) this.acct.clone();” Q3,4

 clone() is supposed to make a deep copy
1. Copy the object

2. Copy any mutable objects it points to

 Object’s clone() handles 1 but not 2

 Effective Java includes a seven page

description on overriding clone():
◦ “[You] are probably better off providing some

alternative means of object copying or simply not
providing the capability.”

Effective Java, by Joshua Block Q5,6

 Copy constructor in Customer:

◦ public Customer(Customer toBeCopied) {…}

 Copy factory in BankAccount:

◦ public abstract BankAccount getCopy();

 Fixed Example:

◦ public BankAccount getAccount() {

return this.acct.getCopy();

}

main() got complicated in
LinearLightsOut, better to
create a subclass…

