
Details on class implementation,

Interfaces and Polymorphism

Check out OnToInterfaces from SVN

 Side effect: any modification of data

 Method side effect: any modification of data
visible outside the method
◦ Mutator methods: side effect on implicit parameter

◦ Can also have side effects on other parameters:

 public void transfer(double amt, Account other)

{

this.balance -= amt;

other.balance += amt;

}

Avoid this if you can! Document it if you can’t

/**

* Transfers the given amount from this

* account to the other account. Mutates

* this account and other.

*

* @param amt

* amount to be transferred

* @param other

* receiving account (mutated)

*

*/

public void transfer(double amt, Account other) {

this.balance -= amt;

other.balance += amt;

}

 Static fields and methods

 Variable scope

 Packages

 Interfaces and polymorphism

public static void main(String[] args) {

double x= 1.0;

double y = 2.5;

swapOrNot(x,y);

System.out.println("x is " + x);

}

private static void swapOrNot(double a, double b) {

double temp = a;

a = b;

b = temp;

}
Draw a box-and-pointer diagram

and predict the output.

Q1

 static members (fields and methods)…
◦ are not part of objects

◦ are part of the class itself

 Mnemonic: objects can be passed around, but
static members stay put

 Cannot refer to this
◦ They aren’t in an object, so there is no this!

 Are called without an implicit parameter

◦ Math.sqrt(2.0)

Class name, not object
reference

 Helper methods that don’t refer to this
◦ Example: creating list of Coordinates for glider

 Utility methods
◦ Example:

 public class Geometry3D {

public static double sphereVolume(double radius) {

…

}

}

 main() method
◦ Why static? What objects exist when program

starts?

Q2

 We’ve seen static final fields

 Can also have static fields that aren’t final
◦ Should be private

◦ Used for information shared between instances of a
class

Q3

 private static int nextAccountNumber = 100;

 or use “static initializer” blocks:

public class Hogwarts {

private static ArrayList<String> FOUNDERS;

// …

}

static {

FOUNDERS = new ArrayList<String>();

FOUNDERS.add("Godric Gryfindor");

// ...

}

Polygon

 Scope: the region of a program in which a
variable can be accessed
◦ Parameter scope: the whole method body

◦ Local variable scope: from declaration to block end:

 public double area() {

double sum = 0.0;

Point2D prev =

this.pts.get(this.pts.size() - 1);

for (Point2D p : this.pts) {

sum += prev.getX() * p.getY();

sum -= prev.getY() * p.getX();

prev = p;

}

return Math.abs(sum / 2.0);

} Q4

 Member scope: anywhere in the class,
including before its declaration
◦ This lets methods call other methods later in the

class.

 public class members can be accessed
outside the class using “qualified names”

◦ Math.sqrt()

◦ System.in

Q5

public class TempReading {

private double temp;

public void setTemp(double temp) {

… temp …

}

// …

}

this.temp = temp;

What does this
“temp” refer

to?
Always qualify field references

with this. It prevents
accidental shadowing.

Q6

 Static imports let us use unqualified names:

◦ import static java.lang.Math.PI;

◦ import static java.lang.Math.cos;

◦ import static java.lang.Math.sin;

 See the Polygon.drawOn() method

 Let us group related
classes

 We’ve been using them:

◦ javax.swing

◦ java.awt

◦ java.lang

 Can (and should) group
our own code into
packages
◦ Eclipse makes it easy…

Q7

 Remember the problem with Timer?
◦ Two Timer classes in different packages

◦ Was OK, because packages had different names

 Package naming convention: reverse URLs
◦ Examples:

 edu.roseHulman.csse.courseware.scheduling

 com.xkcd.comicSearch

Specifies the
company or
organization

Groups related
classes as

company sees fit

Q8

 Can use import to get classes from other
packages:

◦ import java.awt.Rectangle;

 Suppose we have our own Rectangle class
and we want to use ours and Java’s?
◦ Can use “fully qualified names”:

 java.awt.Rectangle rect =

new java.awt.Rectangle(10,20,30,40);

◦ U-G-L-Y, but sometimes needed.

I don’t even want this
package. Why did I

sign up for the
stinging insect of the
month club anyway?

 Express common operations that multiple
classes might have in common

 Make “client” code more reusable

 Provide method signatures and docs.

 Do not provide implementation or fields

Q9

 Interface types are like contracts

◦ A class can promise to implement an interface

 That is, implement every method

◦ Client code knows that the class will have those
methods

◦ Any client code designed to use the interface type
can automatically use the class!

Charges

public interface Charge {

/**

* regular javadocs here

*/

Vector forceAt(int x, int y);

/**

* regular javadocs here

*/

void drawOn(Graphics2D g);

}

public class PointCharge implements Charge {

…

}

interface, not class

No method
body, just a
semi-colon

No “public”,
automatically

are so

PointCharge promises to implement all the
methods declared in the Charge interface

<<interface>>
Charge

PointCharge LinearCharge

Space

Q10

Distinguishes
interfaces

from classes

Hollow, closed
triangular tip

means
PointCharge is a

Charge

 Can pass an instance of a class where an
interface type is expected
◦ But only if the class implements the interface

 We could pass LinearCharges to Space’s
add(Charge c) method without changing
Space!

 Use interface types for field, method
parameter, and return types whenever
possible

Q11

 Charge c = new PointCharge(…);

Vector v1 = c.forceAt(…);

c = new LinearCharge(…);

Vector v2 = c.forceAt(…);

 The type of the actual object determines the
method used.

Q12

 Origin:
◦ Poly  many

◦ Morphism  shape

 Classes implementing an interface give many
differently “shaped” objects for the interface
type

 Late Binding: choosing the right method
based on the actual type of the implicit
parameter at run time

Q13,14

