
Unit Tests, API Documentation, and
Object References

Check out JavadocsAndUnitTesting from SVN

API Documentation, Docs in
Eclipse, Writing your own Docs

 What’s an API?
◦ Application Programming Interface

 The Java API on-line
◦ Google for: java api documentation 6

◦ Or go to: http://java.sun.com/javase/6/docs/api/

 Find the String class documentation:
◦ Click java.lang in the top-left pane

◦ Then click String in the bottom-left pane

Q1,2

http://java.sun.com/javase/6/docs/api/

 Setting up Java API documentation in Eclipse
◦ Should be done already, but if the next steps don’t

work for you, we’ll fix that

 Using the API documentation in Eclipse
◦ Hover text

◦ Open external documentation (Shift-F2)

 Written in special comments: /** … */

 Can come before:
◦ Class declarations

◦ Field declarations

◦ Method declarations

 Eclipse is your friend!
◦ It will generate javadoc comments automatically

◦ It will notice when you start typing a javadoc
comment

/**

* Converts the original string to a

* string representing shouting.

*

* @param input the original string

* @return input in ALL UPPER CASE

*/

static String shout(String input) {

return input.toUpperCase();

}

Description of method,
usually starts with a verb.

@param tag
followed by
parameter
name and
(optional)

description.
Repeat for each

parameter.

@result tag followed by
description of result. Omit

for void methods.

/**

* This class demonstrates unit testing

* and asks you to use the Java API

* documentation to find methods to solve

* problems using Strings.

*

* @author Curt Clifton.

* Created Sep 9, 2008.

*/

public class MoreWordGames { … }

Description of
class

@author Tag
followed by author

name and date

Add javadoc comments to
MoreWordGames

 Don’t try to memorize the Java libraries
◦ Nearly 9000 classes and packages!

◦ You’ll learn them over time

 Get in the habit of writing the javadocs before
implementing the methods
◦ It will help you think before doing, a vital software

development skill

◦ This is called programming with documented stubs

◦ I’ll try to model this. If I don’t, call me on it!

Test-driven Development,
unit testing and JUnit

 Writing code to test other code

 Focused on testing individual pieces of code
(units) in isolation
◦ Individual methods

◦ Individual objects

 Why would software engineers do unit
testing?

Q3,4

 JUnit is a unit testing framework
◦ A framework is a collection of classes to be used in

another program

◦ Does much of the work for us!

 JUnit was written by
◦ Erich Gamma

◦ Kent Beck

 Open-source software

 Now used by millions of Java developers

Q5

 MoveTester in Big Java shows how to write
tests in plain Java

 Look at JUnitMoveTester in today’s repository
◦ Shows the same test in JUnit

◦ Let’s look at the comments and code together…

 Test “boundary conditions”
◦ Intersection points: -40℃ == -40℉

◦ Zero values: 0℃ == 32℉

◦ Empty strings

 Test known values: 100℃ == 212℉
◦ But not too many

 Tests things that might go wrong
◦ Unexpected user input: “zero” when 0 is expected

 Vary things that are “important” to the code
◦ String length if method depends on it

◦ String case if method manipulates that

Walk through creating unit
tests for shout in
MoreWordGames

Test whisper and holleWerld

Differences between primitive
types and object types in Java

 Variables of number type store values

 Variables of class type store references
◦ A reference is like a pointer in C, except

 Java keeps us from screwing up

 No & and * to worry about
(and the people say, “Amen”)

 Consider:

1. int x = 10;

2. int y = 20;

3. Rectangle box = new Rectangle(x,y,5,5);

Q6

 Actual value for number types

 Reference value for object types
◦ The actual object is not copied

◦ The reference value (“the pointer”) is copied

 Consider:
1. int x = 10;

2. int y = x;

3. y = 20;

4. Rectangle box = new Rectangle(5,6,7,8);

5. Rectangle box2 = box;

6. box2.translate(4,4);

Q7,8

Begin the Written Exercise
from Homework 3

Q9,10

