
LinkedList Implementation
Recursion

Turn in your written problems
Mini-project Partner Survey: Do it by 4:00 today
Reminder: Exam #2 is this Friday
◦ Can start 7:15.
◦ You may bring one piece of paper with handwritten notes

for the first part.
◦ Same resources as last time for the programming part.
Markov Milestone 2 due Friday, 5:00pm
Take the Markov Justification quiz on ANGEL now
(5 minutes)

Will be done by teams of 3, Weeks 9-10
I will pick teams, based on performance of
students in the class so far.
◦ Rationale for putting people with similar performance

together
There is a survey on ANGEL that lets you tell me
the names of up to two people whom you'd
prefer NOT to work with.
Project will be a spell-checker and suggester
Other projects have been highly-specified. For
this one, you have a lot of leeway and can be very
creative.

GUI-based program
Check the words of a text file for spelling
◦ User can browse to file
Flag words that are not in program's dictionary
Suggest possible alternate spellings
◦ Think of ways misspelling can occur:

missing or added letters
transposed letters
no space between words
things you come up with

An interface that allows user to correct the
spelling.
◦ change, ignore, ignore all, …

Some GUI things you'll want to learn how to
do
◦ Browse to a file and open it
◦ Deal with text in a text box
◦ Display a list of choices and get user selection
Some things you can do before Tuesday's
kick-off.
◦ Look for a dictionary to use (share it!)
◦ Look at user interfaces of some spell-checkers
◦ Look up various Java classes that may be useful

Especially helpful: The Java Swing book from Safari
Tech Books online (see course syllabus)

Now. Look for a dictionary, think about the
kinds of spelling errors you want to
detect/correct.
Day 25. Begin working with your partners.
Day 27. Demonstrate some progress in class.
Day 30. Final submission of the project is
due.

Abstract Data Types and Data Structures
Collections and Lists
Markov
Friday’s exam
Material you have read
Anything else

LinkedList Implementation part 2
Recursion

Stores items (non-contiguously) in nodes; each
contains a reference to the next node.
Lookup by index is linear time (worst, average).
Insertion or removal is constant time once we have
found the location.
◦ show how to insert A4 after A1.
If Comparable list items are kept in sorted order,
finding an item still takes linear time.

What is the main cause?
◦ All nodes of the linked list are pointed to by the

next field of the previous ListNode …
◦ … except the first node, which is pointed to by the

first field of the LinkedList object.
One solution:
◦ Add an extra node at the beginning of the list
◦ The "header" node.
◦ So a list of n items is represented by n+1 nodes.
◦ The first element of the list is in the second node.

Change the code to include this node.
last should point to the last node.
Write remove.

class LinkedList implements List {
ListNode first;
ListNode last;

Constructors: (a) default (b) single element.
methods:
public boolean add(Object o)
Appends the specified element to the end of this list (returns true)
public int size() Returns the number of elements in this list.
public void add(int i, Object o) adds o at index i.

throws IndexOutOfBoundsException
public boolean contains(Object o)

Returns true if this list contains the specified element. (2 versions).
public boolean remove(Object o)

Removes the first occurrence (in this list) of the specified element.
public Iterator iterator()Can we also write listIterator() ?

Returns an iterator over the elements in this list in proper sequence.

Attempt these in the
order shown here.

class ListNode{
Object element; // contents of this node
ListNode next; // link to next node

ListNode (Object element,
ListNode next) {

this.element = element;
this.next = next;

}

ListNode (Object element) {
this(element, null);

}
ListNode () {
this(null);

}
}

How to implement
LinkedList?

fields?

Constructors?

Methods?

Each node has two pointers, prev and next.
There is one other new node, tail, whose prev
pointer points to the node containing the last
element of the list.
This makes remove() easier to write
◦ and it also makes an efficient ListIterator possible.

What is a recursive method?
A method that calls itself, but on a

simpler problem
Used for any situation where parts of a whole look
like mini versions of the whole:
◦ Folders within folders on computers
◦ Some computer languages (Scheme)
◦ Trees in general
Cons: Takes more space (but time can be roughly
equal)
Pros: Can gives code that’s very easy to understand

For a method that calculates a value:
int foo(int n) {
if (n <=1) { //Base case
return (some easy expression);

} else {
return (some expr. with foo(n-1); //not just
foo(n)) so progress

}
Of course, you can write void recursive methods, and
ones that recurse on values other than n-1

Example we’ve seen: factorial. Look at debugger.

1. Base case
◦ You need at least 1 base case that can be solved

without recursing
2. Progress

◦ You can only recurse on a simpler problem
3. “You gotta believe”

◦ Otherwise, you’ll try to solve the problem both
recursively and non-recursively. This is bad.

4. Compound interest rule
◦ Efficiency: Don’t duplicate work by solving the same

instance of the problem in separate recursive calls
◦ Later

Break

Euclid’s algorithm for calculating gcd(a,b)
gcd(a,b): //assumes a > b
◦ if a is a multiple of b, return b
◦ Otherwise, return gcd(b, a % b) (guaranteed to be

smaller)

Check it out now

Watch it in the debugger.

What else?
Could you write a recursive size() method
for linked lists?

Helper function:
int size() {

if (this.header.next == null) return 0;
return this.header.next.size();

}
We now need to write the ListNode’s size
function.

