4

Line Follower
Specification:
Calibrates, runs and eventually shuts down a robot that follows a black line until a bump sensor is activated.
The user operates the robot by:
1. The user turns on and connects to the robot as usual.
2. The user then repeats the following two steps as desired:
a. The user can press the Advance button repeatedly to SELECT one of the following actions:
· Action W. Calibrate the light sensors for a WHITE surface.
· Action B. Calibrate the light sensors for a BLACK surface.
· Action L. Line-follow the black line that the robot is (presumably) straddling.
· Action Q: Quit – shut down the robot and exit the program.
Pressing the Advance button cycles through the above actions.
The LEDs indicate the currently-selected action.
b. The user can press the Play button to make the robot PERFORM the currently-selected action. To perform the action:
· Line-following ends when either bump sensor is activated, so the user can end line-following by pressing a bumper.
· To WHITE calibrate, the user should place the robot so that both light sensors are seeing WHITE. Then the user presses the PLAY button. The robot then gets the sensor readings and returns them. Before returning, the robot should beep several times if the readings appear to be “way off”.
· To BLACK calibrate: same as WHITE but the user is expected to place the robot so that both light sensors are seeing BLACK. Before returning, the robot should beep several times if the readings appear to be “way off”.
After performing WHITE calibration, the currently-selected action is advanced to 'B' (BLACK calibration).
After performing BLACK calibration, the currently-selected action is advanced to 'L' (line-follow).
After performing line-following (i.e., the 'L' action), the currently-selected action is advanced to 'Q' (quit).

construct_robot():
 1. Constructs and connects to a robot.
 2. Puts it in FULL mode.
 *** So don't run this robot on a table!!! ***
 3. Returns the robot.

main_control_loop(robot):
Runs the given robot as described in the problem specification,
like this:
Sets the currently selected action to 'W'.
Sets the left_sensor_calibrations, right_sensor_calibrations, speed_multiplier, minimum_speed, and maximum_speed to defaults.
Repeats:
1. Waits for a button press.
2. If that button press is 'ADVANCE', advances the action
(that is, changes the currently selected action to the next action).
 If that button press is 'PLAY',
 performs the currently selected action,
 storing returned values as needed.
 (and breaks from the loop if the action is 'Q',
 after doing the action).

wait_for_button_press(robot):
Waits for the user to press (and then release) the Advance or Play button.
Returns 'ADVANCE' or 'PLAY' to indicate which button was pressed.

advance_action(robot, action):
1. Advances to the next action after the given action
2. Sets the LED lights appropriately.
3. Returns the action to which it advanced.
The possible actions are: 'W' 'B' 'L' 'Q'

perform_w_action(robot):
Waits for the user to press (and then release) the Play button.
Then gets the sensor readings of the left and right front cliff sensors. Beeps several times if either of the readings appears to be way off from WHITE. Returns those readings as a 2-tuple.

perform_b_action(robot):
Waits for the user to press (and then release) the Play button.
Then gets the sensor readings of the left and right front cliff sensors. Beeps several times if either of the readings appears to be way off from BLACK. Returns those readings as a 2-tuple.

perform_l_action(robot, left_sensor_calibrations,
 right_sensor_calibrations,
 speed_multiplier,
 minimum_speed, maximum_speed):
Repeats:
 If either bump sensor is activated,
 stop the robot and then break out of the loop.
 Update the wheel speeds
 Sleep a short time
 (to avoid flooding the robot with commands)

perform q_action(robot):
Shuts down the robot. [Aside: after calling this function the main loop should break out of its loop.]

get_light_sensor_readings(robot):
Gets the sensor readings of the left and right front cliff sensors.
Returns those readings as a 2-tuple.

get_bumper_readings(robot):
Gets the sensor readings of the left and right bump sensors.
Returns those readings as a 2-tuple.

update_wheel_speeds(robot, left_sensor calibrations,
 right_sensor calibrations,
 speed_multiplier,
 minimum_speed, maximum_speed):
Makes the robot GO at updated wheel speeds, by:
1. Updates the speeds of the left wheel per the parameters
and the formula:
Let W, D = completely white and dark for the left sensor
 (as stored in left_sensor_calibrations)
Let L be the current reading for the left sensor.
[bookmark: _GoBack]Computes p = (L - D) / (W - D)
Set the left wheel speed to: p * speed_multiplier

But the new speed must be at least the given minimum speed
and at most the given maximum speed.
2. Updates the right wheel speed similarly,
but using the right_sensor_calibrations and the right_sensor reading.

3. Makes the robot go at the new speeds.
