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Final Project Due 20 November 2019 at 5:00 PM 

 
Complete Tasks 1 and 2 individually.  Complete Task 3 with your lab team 
1.  One state linear optimal control by Gauss PS.   
Solve the following linear finite horizon optimal control problem using the Gauss-Legendre PS 
method presented in class, and compare to the indirect solution.  Use 10 collocation points for 
the Gauss PS solution and at least 100 points for the indirect solution.  The cost function is: 
 𝐽 =

1
2
% (𝑥(𝑡)* ∙ 𝑄 ∙ 𝑥(𝑡) + 𝑢(𝑡)* ∙ 𝑅 ∙ 𝑢(𝑡))𝑑𝑡
12

13
 

(1) 

The state dynamics are 
 𝑑𝑥

𝑑𝑡 = 𝐴 ∙ 𝑥(𝑡) + 𝐵 ∙ 𝑢(𝑡) (2) 

With boundary conditions:  
 𝑥(𝑡6) = 1; 				𝑥9𝑡:; = 0 (3) 

Set A	=	B	=	Q	=	R = 1.  Find the indirect solution by forming the Hamiltonian system:  
 𝑑

𝑑𝑡
A
𝑥(𝑡)

𝜆(𝑡)
C = A

𝐴 −𝐵 ∙ 𝑅EF ∙ 𝐵*

−𝑄 −𝐴*
C ∙ A

𝑥(𝑡)

𝜆(𝑡)
C 

 
(4) 

and solving using the Burchett method presented early in the quarter.  Show that the solution is:  
 𝑥(𝑡) = 1.0000 ∙ 𝑒E√J1 − 7.2135 × 10EO ∙ 𝑒√J1

𝜆(𝑡) = 2.4124 ∙ 𝑒E√J1 − 2.9879 × 10EO ∙ 𝑒√J1
𝑢(𝑡) = −𝜆(𝑡)

 
 

(5) 

Plot both solutions of the time history of the state on one axis.  Plot both solutions of the control 
on another axis.  
 
 
 
2.  One state non-linear optimal control by Gauss PS.   
Complete the non-linear example presented in class, and plot the known solution.  Use 10 
collocation points for the Gauss PS solution and at least 100 points for the known solution.  The 
cost function is: 
 

𝐽 =
1
2
% (𝑞 ∙ 𝑦(𝑡) + 𝑟 ∙ 𝑢(𝑡)J)𝑑𝑡
12

13
 

(6) 

The state dynamics are 
 𝑑𝑦

𝑑𝑡 = 2 ∙ 𝑎 ∙ 𝑦(𝑡) + 2 ∙ 𝑏 ∙ X𝑦(𝑡) ∙ 𝑢(𝑡) (7) 

With boundary conditions:  
 𝑦(𝑡6) = 2; 				𝑦9𝑡:; = 1 (8) 

Set a = b = q = r = 1.  The known solution is:  
 𝑦(𝑡) = Y1.4134 ∙ 𝑒E√J1 + 8.4831 × 10EZ ∙ 𝑒√J1[

J
 (9) 
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3.  The caber toss.   
You don’t need to physically toss a caber to pass this assignment, but you will compute the 
optimal trajectory and minimum force required under certain assumptions.  The caber toss is an 
event of the Scottish highland games where competitors throw a pole weighing as much as 200 
lbs.  A successful throw causes the caber to rotate 270 degrees from the starting vertical position 
and ‘point’ directly away from the competitor in its final horizontal position.  In order to 
achieve this, the competitor lifts the proximal end of the caber to waist height, balancing the 
caber as an inverted pendulum.  He then walks forward, allowing the caber to begin rotating 
forward to the launch angle.  Finally, he heaves mostly upward as the distal end of the caber 
rotates downward to achieve enough height and angular velocity such that the caber lands near 
a vertical position after 180 degrees of total rotation.  See for instance this video of world 
champion Dan McKim (https://www.youtube.com/watch?v=xb0FU8rSisU) . 
In order to determine the smallest force 
and optimal trajectory necessary for a 
successful toss you will solve a multiple 
phase problem using Gauss PS.  The first 
phase begins with the caber moving slowly 
forward at the launch angle and zero 
angular velocity.  Constant forces Fx	and Fy  
are applied to the proximal end of the 
caber.  (See below for axis definitions.)  The 
dynamic constraints can be written from 
conservation of linear and angular 
momentum as: 

 

 
 𝑑J𝑥

𝑑𝑡J = −𝑔 +
𝐹a
𝑚 

 

 
(10) 

 𝑑J𝑦
𝑑𝑡J =

𝐹c
𝑚 

 

 
(11) 

 𝐼
𝑑J𝜃
𝑑𝑡J =

𝐿
2𝐹a sin

(𝜃) −
𝐿
2𝐹ccos	(𝜃) 

 

 
(12) 

The second phase begins when the contestant loses contact with the caber (Fx	= Fy	= 0) and ends 
when the distal end of the caber strikes the ground.  You can use Eqs. (10)-(12) for this phase as 
well, setting the contact forces to zero.  When the distal end strikes the ground, the angular 
velocity is instantaneously reduced by the inelastic collision.  The angular velocity after the 
collision can be calculated as 

 𝑑𝜃
𝑑𝑡
l
JmnF

= o𝐼
𝑑𝜃
𝑑𝑡
l
Jm
+𝑚

𝐿
2 sin

(𝜃|Jm)
𝑑𝑥
𝑑𝑡
l
Jm
− 𝑚

𝐿
2 cos

(𝜃|Jm)
𝑑𝑦
𝑑𝑡
l
Jm
q r𝐼 +

𝑚𝐿J

4 st  

 

 
(12) 
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In order for the caber to reach vertical and tumble away from the competitor, the minimum 
angular velocity after striking the ground is given by conservation of energy 
 

 𝑑𝜃
𝑑𝑡
l
JmnF

≥ v3𝑔
𝐿
(1 + cos(𝜃|Jm))  

 

 
(13) 

Equations (12) and (13) can be combined into a single boundary condition on the states at the 
end of phase two 

 
v3𝑔
𝐿
(1 + cos(𝜃|Jm))

= o𝐼
𝑑𝜃
𝑑𝑡
l
Jm
+ 𝑚

𝐿
2 sin

(𝜃|Jm)
𝑑𝑥
𝑑𝑡
l
Jm
−𝑚

𝐿
2 cos

(𝜃|Jm)
𝑑𝑦
𝑑𝑡
l
Jm
q r𝐼 +

𝑚𝐿J

4 st  

   

 
(14) 

 
Thus, your non-linear constraint function must include instances of Eqs. (10)-(12) for each phase 
(put these in state space form, so you will actually have six equations for each phase), and Eq. 
(14) for the final boundary condition.  You will also need the following geometric constraints at 
the initial and final states:  

 𝑥|F = o1 +
𝐿
2 cos	(𝜃

|F)q  

   

 
(15) 

 𝑦|F = o
𝐿
2 sin

(𝜃|F)q  

 

(16) 

 𝑥|Jm = −Yw
J
cos(𝜃|Jm)[ , since cos(𝜃|Jm) < 0 (17) 

 
Linear constraints can be used to enforce the initial conditions  

 𝑥̇|F = 0 
   

 (18) 

 𝑦̇|F = 2.0 
 

Assume non-zero forward velocity at 
toss initiation. 

(19) 

 𝜃̇zF = 0  (20) 
 
 
Finally, in order to stitch the two phases together, the states at the end of phase one must match 
the states at the beginning of phase two 

 𝑥|m = 𝑥|mnF;		𝑥|̇m = 𝑥|̇mnF		 
   

(21) 

 𝑦|m = 𝑦|mnF;		𝑦|̇ m = 𝑦|̇ mnF 
 

(22) 

 𝜃|m = 𝜃|mnF;		𝜃|̇ m = 𝜃|̇ mnF (23) 
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In order to give fmincon a reasonable chance of finding a solution, assume phase one takes one 
second, and phase two takes one second.  Use the following parameters: 
  

 𝑚 = 75	𝑘𝑔; 		𝑔 = 9.81
m
sJ ; 			𝐿 = 3	𝑚 (23) 

 
 

HINTS:  
• use 12 collocation points for each phase.   

• Use the following non-linear geometric 
constraints on the initial conditions: 

 
Proximal end is 1m above ground, cg is 

L/2cosq above proximal end: 

𝑥F − 1 −
𝐿
2 cos 𝜃F = 0 

 

𝑦F −
𝐿
2 sin𝜃F = 0 

 
Distal end strikes ground at end of phase 2: 

(cosq < 0 after nearly p rad of rotation) 

𝑥J} +
𝐿
2 cos 𝜃J} = 0 

 
 

• Use upper and lower bounds to help fmincon find the solution: 

−∞ < 𝑥̇ < ∞ 
0 < 𝑦̇ < ∞ 
0 < 𝑥 < ∞ 
0 < 𝑦 < ∞ 
0 < 𝜃 < 𝜋 
0 < 𝜃̇ < ∞ 

 
 
 
 

 


