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Abstract

We develop an algorithm capable of detecting the presence of spherical voids in
a thermally conducting object. In addition, the process recovers both the radii and
locations of each void. Our method involves the application of a known steady-state
heat flux to the object’s boundary and measurement of the induced steady-state tem-
perature on the boundary.
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1 Introduction

The problem of imaging defects in objects is of industrial importance. This task is often
complicated by the need to image the defects without destroying the object. One way of
doing this is X-ray imaging. However, this method may not be suited to every application.
Thermal imaging and impedance imaging – the use of electrical current – are other methods
currently being investigated in numerous areas. See [3] .

In this paper we develop an algorithm for imaging defects that are in the shape of
spherical voids within an arbitrary three-dimensional domain. We assume the object is
thermally conducting, homogeneous, with an interior that is inaccessible. We apply a known
heat flux to the object’s boundary and solve the inverse problem of recovering the void(s)
from the induced boundary temperature measurements. The inverse problem is solved by
employing the Reciprocity Gap [1] approach.

Other groups have worked on different versions of this problem, e.g., [5, 6]. For example,
Talbott and Spring [6] studied the recovery of voids within a two dimensional domain. This
work is mainly an extension to three dimensions of these previous projects.

In the next section we give a description of the forward problem. This is followed in
Section 3 by the formulation of the inverse problem. Also in Section 3, we give a proof
to a uniqueness theorem which shows that voids can be uniquely recovered from thermal
data. Sections 4 and 5 are devoted to formulating the Reciprocity gap functional and test
functions. In Section 6, we work on recovering a single void, and in Section 7, multiple voids.
In both of Sections 6 and 7, we include numerical examples to show the effectiveness of our
algorithm.

2 Forward Problem

Consider a three-dimensional domain Ω with a single internal void D. The steady-state
temperature anywhere in Ω can be determined, in theory, if we know the shape, size, location,
and the thermal properties (including the boundary and initial conditions) of Ω, as well as
that of the void D. Let us denote the boundary of Ω as ∂Ω and that of the void as ∂D.
Assume a steady heat flux g is applied to ∂Ω and that the boundary of the void D is perfectly
insulating. The equations governing the steady-state behavior of the system are

∆u = 0 in Ω/D, (1)

∂u

∂n
= g on ∂Ω, (2)

∂u

∂n
= 0 on ∂D (3)

3



In the equations above, u(x, y, z) denotes the temperature at point (x, y, z) in Ω \D and ∆u
is the Laplacian of the temperature. In cartesian co-ordinate, ∆u = ∂2u

∂x2 + ∂2u
∂y2 + ∂2u

∂x2 . The

expression ∂u/∂n := ∇u ·n is the heat flux in the direction of the outward unit normal n on
∂Ω or ∂D, as appropriate. In order for equations (1)-(3) to possess a solution, it is necessary
that

∫
∂Ω gdS = 0, which means physically that the net heat flux going into Ω equals zero.

Moreover, the solution to equations (1)-(3) is unique only up to an additive constant. A
unique solution can be obtained by imposing an additional normalizing condition, e.g.,

∫

∂Ω
u dS = 0

where dS denotes surface measure. See Figure 1 below.

Figure 1: A region Ω with Spherical Void D

As we mentioned earlier, if the size, shape, and location of the void are known, we can
write out the solution to the equations above, at least up to an additive constant. This is
the so-called forward problem: we have a partial differential equation on a given region (the
domain Ω minus the void(s)) and the goal is to obtain the solution, that is, the temperature
of the region. In the next section we formulate the inverse problem, which describes the
situation when we know something about the temperature in all or part of the system and
we want to use this knowledge to obtain information on the voids.

3 Inverse Problem

Suppose we pump in a steady flux g into ∂Ω and then measure the induced temperature
u on ∂Ω. Remember that the object we are working with is internally inaccessible, so the
boundary temperature is all we have. From the boundary temperature data and the flux
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that produced it, we hope to image the internal void as accurately as possible. The function
u is of course governed by equations (1) - (3). However, we are now solving for the geometry
of the void D, instead of the temperature u.

A standard argument commonly used in the field of inverse problems and given below
shows that any void can be uniquely recovered from one such input flux/temperature mea-
surement, provided the input flux is not identically zero. This proof is based on the following
two ”Unique Continuation” theorems [4] which we state here without proof:

Theorem 1: Let u1 and u2 be harmonic functions in a connected domain B, and suppose
that u1 and u2 agree on some open ball contained in B. Then u1 ≡ u2 throughout B.

Theorem 2: Let u1 and u2 be harmonic functions in a connected domain B, and suppose
that u1 = u2 and ∂u1

∂n
= ∂u2

∂n
on some open portion of ∂B. Then u1 ≡ u2 throughout B.

We now make use of the above two theorems to give a proof that the inverse problem
has a unique solution [4]:

Uniqueness Theorem: Let D1 and D2 be two voids in Ω, and let Ωk = Ω/Dk for
k = 1, 2. Suppose u1 and u2 are harmonic on Ω1 and Ω2, respectively, with ∂uk

∂n
= g on ∂Ω

for k = 1, 2, and ∂uk

∂n
= 0 on ∂Dk for k = 1, 2. Assume g is not identically zero. If u1 = u2

on any open portion of ∂Ω then D1 = D2.

Proof: The functions u1 and u2 are both harmonic on Ω/(D1 ∪ D2). Since they have
the same Cauchy data (the Cauchy data means the value of the function AND its normal
derivative) on some open portion of ∂Ω, we have by Theorem 2 that u1 ≡ u2 throughout
Ω/(D1 ∪D2).

We can derive a contradiction by supposing that D1 6= D2; in this case at least one of
D2/D1 or D1/D2 is non-empty, so we’ll assume the former. Let E = D2/D1. In this case
we find that u1 is defined on E, and moreover, ∂u1

∂n
≡ 0 on E. This means that u1 must be

constant on E, because from the Divergence Theorem we have

0 =
∫

∂E
u1

∂u1

∂n
dS =

∫

E
∇ · (u1∇u1) dV =

∫

E
(u14u1 +∇u1 · ∇u1) dV =

∫

E
|∇u1|2dV

since 4u1 = 0 and ∇u1 · ∇u1 = |∇u1|2. From
∫
E |∇u1|2dV = 0 we must conclude that

∇u1 ≡ 0 (since the integrand is non-negative) and hence u1 is constant in E. It doesn’t
matter what the constant is.

Since u1 (defined on Ω/D1) agrees with a constant function (which is harmonic), the
function u1 is constant throughout Ω/D1, which forces g = ∂u1

∂n
= 0, a contradiction. We
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Figure 2: Effect of void on heat flow

therefore conclude that D1 6= D2, which completes the proof.

Figure 2 provides an intuitive picture that illustrates why we can recover the domain
D. The figure contains two similar domains, Ω and Ω \ D. If we apply the same heat
flux to both domains, we see that the heat sails through the left one, Ω, unimpeded, while
the defect causes a slight perturbation in the heat flow in the domain Ω \ D. Thus we
expect a difference in the boundary temperature of the two domains. In fact, we expect
different defects to produce slightly different perturbation signatures (as we have shown in
the Uniqueness Theorem above). The difficulty is to find method for actually reconstructing
D explicitly and efficiently.

4 The Reciprocity Gap Approach

4.1 The Reciprocity Gap Formula

In order to solve the inverse problem, we will employ what is called the Reciprocity Gap
functional [1]. Let us outline the derivation of this functional from Green’s second identity.
Recall that Green’s second identity states that for any pair of functions f and w contained
in C2(B) for a bounded domain B we have

∫ ∫

B
(f∆w − w∆f) dA =

∫

∂B

(
f

∂w

∂n
− w

∂f

∂n

)
dS

Let B = Ω \D, take f = u on Ω \D, and let w be a known function which is harmonic on
all of Ω (hence on Ω \D) to obtain

0 =
∫ ∫

Ω/D
(u∆w − w∆u)dA =

∫

∂Ω∪∂D

(
u
∂w

∂n
− w

∂u

∂n

)
dS
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=
∫

∂Ω

(
u
∂w

∂n
− w

∂u

∂n

)
dS −

∫

∂D

(
u
∂w

∂n
− w

∂u

∂n

)
dS. (4)

In the above we are taking (for later convenience) the normal n on ∂D to point OUT of D,
hence into Ω \D. The negative sign appears in the left side of the last equation because the
outward normal to ∂Ω ∪ ∂D is the negative of the outward normal to ∂D. With equations
(2) and (3) in equation (4) we can write

RG(w) :=
∫

∂Ω

(
u
∂w

∂n
− wg

)
dS =

∫

∂D
u
∂w

∂n
dS (5)

It is important to note that we can compute the reciprocity gap functional RG(w) for any
chosen harmonic function w, since we know g and u on ∂Ω. We thus have the ability to
compute the integral on the right in equation (5). With the use of special choices for the
test function w, we will be able to exploit this ability to recover information about D.

4.2 Test Functions

The test function w in the reciprocity gap function must be harmonic in Ω. At this point,
we pick a class of test functions that satisfies this condition and use these functions to obtain
the center and radius of the defect. The class of test functions we consider are those of the
form

w = Cepxx+pyy+pzz

for complex numbers C, px, py, pz. That w be harmonic forces p2
x +p2

y +p2
z = 0. This is easily

seen from taking the Laplacian of w:

∆w =
∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂x2

= p2
xw + p2

yw + p2
zw

Therefore, ∆w = 0 implies p2
x + p2

y + p2
z = 0, since w is nonzero.

If we choose px to be zero then we must have pz = ±ipy. Let us take py = p for some
p and pz = ip. We also set C = 1/p (with the restriction that p 6= 0). We obtain a sub-class
of harmonic test functions

w1
p(x, y, z) =

epy+ipz

p
. (6)
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Similarly, if we set py to zero we can construct a second sub-class of test functions

w2
p(x, y, z) =

epx+ipz

p
. (7)

We will also need ∂w1
p/∂n and ∂w2

p/∂n. We find that

∂w1
p

∂n
= ∇w1

p · n
= epy+ipz < 0, 1, i > ·n

and

∂w2
p

∂n
= ∇w2

p · n
= epx+ipz < 1, 0, i > ·n

As we will see in the next section, these two sub-classes of test functions will allow us to
easily obtain the center of the void.

5 Imaging a Single Void

In this section we will work on imaging a single void. In the next section we will extend the
results for one void to the case where we have multiple voids.

We now define the problem geometrically. We assume D is spherical with center (a, b, c)
and radius R. The surface ∂D of the void can be parameterized as

x = a + R sin ϕ cos θ

y = b + R sin ϕ sin θ 0 ≤ ϕ ≤ π

z = c + R cos ϕ 0 ≤ θ ≤ 2π

With this parameterization we find that surface measure is given by ds = sin(ϕ) dϕ dθ.
For (x, y, z) ∈ ∂D equation (6) can be written as

w1
p =

1

p
ep(b+R sin ϕ sin θ+ic+iR cos ϕ)

=
1

p
ep(b+ic)epR(sin ϕ sin θ+iR cos ϕ)

≈ ep(b+ic)

p
(8)
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where we have assumed R is small and used the approximation

epR(sin ϕ sin θ+i cos ϕ) = 1 + O(R)

Similarly, for small R we approximate equation (7) as

w2
p ≈ ep(a+ic)

p
. (9)

Note that the outward unit normal vector on ∂D with our parameterization is given by

n =< sin ϕ cos θ, sin ϕ sin θ, cos ϕ > (10)

5.1 Finding The Center of a Single Void

Use of the approximations to the test functions from (8) and (9) in the gap reciprocity
function (5) yields

RG(w1
p) =

∫ 2π

0

∫ π

0
u
∂w1

p

∂n
R2 sin ϕdθdϕ

=
∫ 2π

0

∫ π

0
uepy+ipz < 0, 1, i > ·n R2 sin ϕdθdϕ

≈ ep(b+ic)
∫ 2π

0

∫ π

0
u < 0, 1, i > ·n R2 sin ϕdθdϕ

(11)

and

RG(w2
p) =

∫ 2π

0

∫ π

0
u
∂w2

p

∂n
R2 sin ϕdθdϕ

=
∫ 2π

0

∫ π

0
uepx+ipz < 1, 0, i > ·n R2 sin ϕdθdϕ

≈ ep(a+ic)
∫ 2π

0

∫ π

0
u < 1, 0, i > ·n R2 sin ϕdθdϕ (12)

The functions
∂w1

p

∂p
and

∂w2
p

∂p
are also harmonic (as functions of x, y, and z). Use of these as

test functions in the reciprocity gap functional, with similar approximations to those above,
yields

RG(∂w1
p/∂p) = (b + ic)ep(b+ic)

∫ 2π

0

∫ π

0
u < 0, 1, i > ·n R2 sin ϕdθdϕ (13)
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and

RG(∂w2
p/∂p) = (a + ic)ep(a+ic)

∫ 2π

0

∫ π

0
u < 1, 0, i > ·n R2 sin ϕdθdϕ (14)

If we combine equations (13) and (11) we have

RG(∂w1
p/∂p)

RG(w1
p)

≈ (b + ic) (15)

while equations (14) and (12) yield

RG(∂w2
p/∂p)

RG(w2
p)

≈ (a + ic) (16)

from which we can recover a, b, and c, by numerically computing the left hand sides of the
equations.

5.2 Recovering the Radius

To find the radius of the void, we use RG(w), which we restate here for convenience:

RG(w) =
∫

∂D
u
∂w

∂n
dS

The main goal in this section will be to (partially) prove the following theorem:
Theorem 4: For any harmonic function w = epxx+pyy+pzz we have

RG(w) = 2πR3∇u0(a, b, c) · qeq·r + O(R4)

where q =< px, py, pz > and d = (a, b, c) is the center of a void of radius R and u0 is the
harmonic function on Ω with Neumann data g.

We now prove this theorem, but omit a certain technical portion which can be shown
using methods similar to those of [2]

Proof of Theorem 4: Let us write u = u(r, ϕ, θ) with r ≥ R to denote u on or outside
the surface of the void D of radius r = R, with (r, ϕ, θ) denoting spherical coordinates about
the center (a, b, c) of D as before. We would like to obtain an explicit but good approximation
for u.

Take u0 to be the solution to the heat equation if no void were present in Ω. If we define
a quantity v as v = u−u0, then using the fact that ∆u0 = 0 and equations (1) - (3) on page
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3 shows that v satisfies

∆v = 0 in Ω/D (17)

∂v

∂n
= 0 on ∂Ω (18)

∂v

∂n
= −∂u0

∂n
on ∂D (19)

We will ignore the condition (18), and instead seek a solution which rapidly decays with
respect to r as r → ∞. The techniques of [2] can be adapted to this setting to show that
this introduces an error of order O(R4) to our final approximation.

It is worth noting that on ∂D we have ∂
∂n

= ∂
∂r

. As a consequence we have

∂u0

∂n
= ∇u0 · n
= ∇u0(a + R sin ϕ cos θ, c + R sin ϕ sin θ, c + R cos ϕ)· < sin ϕ cos θ, sin ϕ sin θ, cos ϕ >

= ∇u0(a, b, c)· < sin ϕ cos θ, sin ϕ sin θ, cos ϕ > +O(R)

for small R, where we have made use of equation (10) and the fact that

∇u0(a + R sin ϕ cos θ, c + R sin ϕ sin θ, c + R cos ϕ) = ∇u0(a, b, c) + O(R).

Thus from equation (19) we find

∂v

∂r
=

∂v

∂n
= −∇u0(a, b, c)· < sin ϕ cos θ, sin ϕ sin θ, cos ϕ > +O(R). (20)

A straightforward separation of variables argument shows that the harmonic function v(r, ϕ, θ)
which satisfies (20) and decays at infinity is given by

v(r, ϕ, θ) = R3∇u0(a, b, c)· < sin ϕ cos θ, sin ϕ sin θ, cos ϕ >

2r2

and on r = R this is

v ≈ R
∇u0(a, b, c)· < sin ϕ cos θ, sin ϕ sin θ, cos ϕ >

2
(21)

This approximation for v uniquely satisfies (17) and (19) while condition (18) is ignored.
Instead, we have ∂v

∂n
on ∂Ω decaying very fast as r goes to infinity.
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A straightforward linearization of u0(x, y, z) for (x, y, z) ∈ D yields

u0 = u0(a, b, c) + R∇u0(a, b, c)· < sin ϕ cos θ, sin ϕ sin θ, cos ϕ > +O(R2).

Using this approximation and that for v, we obtain, to order O(R2),

u = u0 + v

u ≈ u0(a, b, c) +
3

2
R∇u0(a, b, c)· < sin ϕ cos θ, sin ϕ sin θ, cos ϕ > (22)

In what follows, we use this approximation for u in the reciprocity gap functional and
simplify. First, define vectors d =< a, b, c > and q =< px, py, pz >. Our class of test

functions has the form w = ed·q and ∂wp

∂n
= (q · n)eq·d. Note that we have dropped the terms

containing R which we still assume is small. So, we have

RG(wp) =
∫ 2π

0

∫ π

0
(u0(a, b, c) +

3

2
R∇u0(a, b, c) · n)(q · n)eq·d R2 sin ϕdθdϕ

= R2eq·r
∫ 2π

0

∫ π

0
u0(a, b, c)(q · n) sin ϕdθdϕ

+
3

2
R3eq·d

∫ 2π

0

∫ π

0
∇u0(a, b, c) · n(q · n) sin ϕdθdϕ

=
3

2
R3eq·r

∫ 2π

0

∫ π

0
∇u0(a, b, c) · n(q · n) sin ϕdθdϕ

=
3

2
R3eq·r · 4

3
π∇u0(a, b, c) · q

= 2πR3∇u0(a, b, c) · qeq·d (23)

where we have made use of (10). This final equation completes the proof of Theorem 4.
We now have a method for recovering R, for we can compute RG(w) on the right in

Theorem 4 from boundary data, while on the left we know all quantities except R (if we’ve
recovered the center already).

5.3 Numerical Test

Indeed, the formulas (15) , (16), and (23) are very effective in imaging voids. We were able
to image several voids within a spherical domain. The results can be better illustrated with
a specific example.

We used Femlab to construct a domain Ω which is a unit sphere centered at the origin.
We then carved out a spherical void D of radius 0.2, centered at (0.2, 0.1, 0.5). We simulated
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the solution to the system using the heat flux g = sin ϕ (in spherical coordinates, or g = z in
rectangular). This Femlab solution provided us with temperature data on various points on
the boundary of Ω, at 50 uniformly separated longitudinal and 25 uniformly separated lati-
tudinal points on Ω. Also, it can be easily verified that with our choice of g, the temperature
if no void were present in Ω is u0(x, y, z) = z.

Using an algorithm written in Maple we computed the RG function and it’s derivatives
with respect to p. From these, we were able to recover a void with center (0.199, 0.090, 0.504)
and radius (0.201). This result is clearly a good one as it agrees quite well with the actual
void—see the figure below. This result was obtained with a p value of 0.2. Theoretically,
the recovery should be successful independent of the p values used. However, we obtained
variations ranging from very minute to significant for different values of p. This discrepancies
are due to numerical instabilities in the algorithm used.

Figure 3: Actual and Recovered Void

6 Imaging Multiple Voids

What we have done so far can be easily extended to cases where we have multiple voids
[3]. Assume there are N non-overlapping voids Di, for i = 1..N , within Ω. Let the center
and radius of void Di be Ri and (ai, bi, ci), respectively. In this case, the Gap Reciprocity
functional has the form

RG(w) :=
∫

∂Ω

(
u
∂w

∂n
− w

∂u

∂n

)
dS =

N∑

i=1

∫

∂Di

u
∂w

∂n
dS (24)

13



6.1 Finding The Center of Each Void

With test function w = w1
p = epy+ipz let us define φ1(p) := RG(w1

p), and similar set φ2(p) :=
RG(w2

p), where w2
p = epx+ipz. A similar argument to that in the single void case yields

φ1(p) =
N∑

i=1

epz1
i

∫ 2π

0

∫ π

0
ui(ϕ, θ) < 1, 0, i > ·n R2 sin ϕdθdϕ (25)

and

φ2(p) =
N∑

i=1

epz2
i

∫ 2π

0

∫ π

0
ui(ϕ, θ) < 1, 0, i > ·n R2 sin ϕdθdϕ (26)

where z1
i = bi + ici and z2

i = ai + ici. Here we use ui(ϕ, θ) to denote the restriction of u to
∂Di, again in spherical coordinates based at the center of Di.

For simplicity we rewrite (25) and (26) as φ1(p) =
∑N

i=1 epz1
i J1

i and φ2(p) =
∑N

i=1 epz2
i J2

i ,
in which J1

i and J2
i are, respectively the integral terms in (25) and (26). They are constants

in p.
Because each of the functions φ1(p) and φ2(p) is a sum of simple exponentials in p, each

must satisfy an ordinary differential equations (ODE) of the form

cNφ
(N)
1 (p) + cN−1φ

(N−1)
1 (p) + cN−2φ

(N−2)
1 (p) + . . . + c1φ

′
1(p) + c0φ1(p) = 0 (27)

or

dNφ
(N)
2 (p) + dN−1φ

(N−1)
2 (p) + dN−2φ

(N−2)
2 (p) + . . . + d1φ

′
2(p) + d0φ

′
2(p) = 0 (28)

respectively, for some constants ci and di, 0 ≤ ci, di ≤ N . Note again that the φ
(i)
1 (p) and

φ
(i)
2 (p) are computable from boundary data for any given complex p 6= 0, as

φ
(i)
j = RG

(
∂iwj

∂pi

)
.

Without loss of generality we may set cN and dN to 1. We can then construct a linear
system of N equations in the variables c0 to cN−1 or d0 to dN−1 by choosing N different
values of p. We then solve this system for the c′is and d′is. Once we have these coefficients,
we then use them in the equations

(z1)N +
N∑

i=0

ci(z
1)i = 0
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(z2)N +
N∑

i=0

di(z
2)i = 0

These are the characteristic equations for ODE’s (27) and (28), so solving them gives us the
z1

i s and z2
i s from which we recover the centers (ai, bi, ci) of the voids.

6.2 Determining the Number of Voids

Usually, the number of voids will be unknown, so we will want to determine that first. To
do this, we make a guess at the number of voids, say M with M ≥ N . As before, using M
different values of p we form the linear system

cM−1φ
(M−1)(pj) + cM−2φ

(M−2)(pj) + . . . + c1φ
′
(pj) + c0φ(pj) = −φ(M)(pj) (29)

for j = 1..M , where φ = φ1 or φ2.
If we put the system of equations above in matrix format, then the M ×M coefficient

matrix will have φ(M−i)(pj) as its (i, j) element. If our guess M for the number of voids is
the same or greater than the actual number of voids then as shown in [2], the rank of the
linear system (29) gives us the number of voids.

However, directly computing the rank of the coefficient matrix will only give the correct
number of voids if its elements, φ(M−i)(pj), are exact. In most instances, the φ(M−i)(pj) will
be computed using experimental data. So, while the φ(M−i)(pj) may be accurate, depending
on the quality of the data, it will rarely be exact.

We estimate the rank of the linear system by performing a singular value decomposition
on the coefficient matrix. However, directly computing the rank of the coefficient matrix will
only give the correct number of voids if its elements, φ(M−i)(pj), are exact. In most instances,
the φ(M−i)(pj) will be computed using experimental data. We thus perform a thresholding
operation to estimate the rank, typically by taking as non-zero only those singular value
which exceed some fraction of the largest singular value (usually around 0.01).

6.3 Recovering the Radii

Again, the formula for the radii is similar to that we got in the case of a single void. We
state the formula as a theorem:

Theorem 5: Assume there are N spherical voids, each Di with radius Ri and center
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(ai, bi, ci), for i = 1 to i = N . For any harmonic test function w = epxx+pyy+pzz

RG(wp) = 2π
N∑

i=1

R3
i∇u0(ai, bi, ci) · qeq·ri + O(R4) (30)

where q =< px, py, pz > and u0 is the harmonic function on Ω with Neumann data g
The only difference in the proof is that u is approximated separately near the center of

each void. Thus, after similar steps from equations (17) to (22), from page (11), we obtain

ui ≈ u0(ai, bi, ci) +
3

2
Ri∇u0(ai, bi, ci) · n < sin ϕ cos θ, sin ϕ sin θ, cos ϕ > (31)

where ui is the approximation for u in the vicinity of void Di.
Using (31) in the RG function yields

RG(wp) =
N∑

i=1

∫ 2π

0

∫ π

0
(u0(ai, bi, ci) +

3

2
Ri∇u0(ai, bi, ci) · n)(q · n)eq·r R2

i sin ϕdθdϕ

=
N∑

i=1

R2
i e

q·r
∫ 2π

0

∫ π

0
u0(ai, bi, ci)(q · n) sin ϕdθdϕ

+
N∑

i=1

3

2
R3

i e
q·r

∫ 2π

0

∫ π

0
∇u0(a, b, c) · n)(q · n) sin ϕdθdϕ

=
N∑

i=1

3

2
R3

i e
q·r

∫ 2π

0

∫ π

0
∇u0(ai, bi, ci) · n(q · n) sin ϕdθdϕ

=
3

2

N∑

i=1

R3
i e

q·r · 4

3
π∇u0(ai, bi, ci) · q

= 2π
N∑

i=1

R3
i∇u0(ai, bi, ci) · qeq·r

Now that we have Theorem 5 and a means of estimating the center of the voids, we
can recover the radii by computing RG(wp) for N different values of p and then solving the
resulting system linear system of equations for the R3

i , and thus obtain each Ri.

6.4 Numerical Test

Once again we use Femlab to obtain data to test the results above. We use the input heat
flux g = cos ϕ with Ω as the unit sphere with three voids. The p values were taken as 0.2
times the cube roots of unity. The actual void parameters and the recovered values are
shown in the table below:
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Actual Recovered

Centers
(-0.5, -0.3, 0) (-0.524, -0.344, -0.029)
(0.1, 0.2, 0.7) (0.090, 0.197, 0.745)
(0.4, 0.4, -0.3), (0.423, 0.423, -0.303)

Radii
0.25 0.248
0.20 0.210
0.30 0.316

Figure 4: Actual and Recovered Voids

7 Conclusion and Future Work

Thus far, we have successfully developed and implemented an algorithm for accurately recov-
ering spherical voids within an arbitrary domain. The information we get from implementing
this algorithm includes the number of voids, their locations, and radii. Our algorithm is based
on the reciprocity gap approach, which requires only boundary data for void recovery. This
way, our need to test non-destructively is satisfied.

There are several ways this project can be extended. It would be appropriate to see if
a different approach can be developed for recovering spherical voids as was done here. A
specific direction may be using the Reciprocity gap approach but with a different class of test
functions. Another natural extension will be imaging with time with time dependent fluxes.
Also, very little work has been done in recovering planar defects in a spherical domain. This
will be an appropriate subject for future work.
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