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Abstract

Given a two-dimensional region that contains one or more circu-
lar voids, we develop mathematical methods to locate the center and
radius of the voids based on thermal boundary data. These methods
can be readily applied in the field of non-destructive evaluation.
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1 Introduction to The Problem

The ability to ascertain the inner structure of an object without destroying
the object is a useful task worth further exploration. One approach involves
applying heat to the outside of the object and measuring the temperature
response around the boundary. Defects or voids that may exist within the
object cause variations in the boundary temperature. These differences may
allow one to recover the location and size of the void(s). In this report
we develop several algorithms for using the boundary temperature response
induced by one or more input heat fluxes to recover the positions and areas
of interior circular, perfectly insulating voids.

In our paper we build upon and use methods similar to those described in
previous research. We will adapt and use the same “test function” approach
for finding multiple voids as [2]; however, the method that we will describe
does not need the net input flux to be zero, and only one of our methods will
have the constraint of letting time be sufficiently large so that the heat in
the region Ω reaches a steady state. Our research is also an extension of [4]
where instead of considering cracks we examine circular, perfectly insulating
voids.

1.1 The Forward Problem

In our problem we examine the time-dependent heat equation (1) in two
spatial dimensions, where u (x, y, t) is the temperature at some time t for
some point (x, y) ∈ Ω ⊂ R2. We apply a known, controlled heat flux g to
the boundary ∂Ω of the region Ω, modelled by equation (2) below. Inside Ω
there exists a circular void D. For modelling purposes we assume that the
boundary ∂D is completely insulating (blocks all heat flow), which leads to
equation (3). We also assume that the region Ω has known temperature 0 at
time t = 0, as quantified by equation (4). The forward problem consists of
using knowledge about the location and size of D to solve equations (1)-(4)
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and predict how the temperature will behave on the rest of Ω.

∂u

∂t
−∆u = 0 in Ω \D (1)

∂u

∂~n
= g on ∂Ω (2)

∂u

∂~n
= 0 on ∂D (3)

u (x, y, 0) = 0 (4)

Of course ∆ = ∂2

∂x2 + ∂2

∂y2 is the Laplacian and ∂
∂~n

[f ] = ∇f · n̂ on either
∂Ω or ∂D is the normal derivative. We take n̂ to point outward on ∂Ω and
also outward on ∂D (hence INTO Ω \ D). Figure 1 illustrates the physical
situation; the arrows indicate the applied heat flux g, either into or out of
∂Ω.

Figure 1: Single Void Problem

1.2 The Inverse Problem

The inverse problem is governed by the same equations (1)-(4) as the for-
ward problem but in this case the center and the radius of D are unknown.
What is known, in addition to the input heat flux g, is the resulting induced
temperature u on ∂Ω over some time range 0 ≤ t ≤ T .

Using techniques similar to those in [3] it can be shown that knowledge of
g and u on any open portion of ∂Ω over any time range t1 < t < t2 uniquely
determines the interior void D. Indeed, such measurements uniquely de-
termine any collection of interior voids. Our task of determining D from
measurements of u on ∂Ω is thus at least feasible.
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2 Using Anti-symmetry to Find a Void’s Cen-

ter

2.1 The Test Function

Let v (x, y, t) be a so-called “test function” that satisfies the backwards heat
equation

∂v

∂~n
+ ∆v = 0 (5)

Let the test function also satisfy the final condition v (x, y, T ) = 0 for
some fixed time T . If (p, q) is a point outside Ω then a particularly useful
function that satisfies these conditions is

v (x, y, t) =
1

4π (T − t)
e

(x−p)2+(y−q)2

4(T−t) (6)

2.2 Reciprocity Gap

We start by multiplying the heat equation by the test function v (x, y, t) and
then integrating with respect to time and over the region Ω\D. We then
obtain
∫

Ω\D

∫ T

0

v (x, y, t)
∂

∂t
u (x, y, t) dt dA =

∫ T

0

∫

Ω\D
v (x, y, t) ∆u (x, y, t) dA dt .

(7)
Through integration by parts with respect to time, the left side of equation
(7) becomes

∫

Ω\D
v (x, y, T ) u (x, y, T ) dA −

∫

Ω\D

∫ T

0

∂

∂t
v (x, y, t) u (x, y, t) dt dA (8)

By using the identity v 4 u = ∇ · (v∇u) − ∇u · ∇v the right hand side of
equation (7) becomes

∫ T

0

∫

Ω\D

(
∇ · (v (x, y, t)∇u (x, y, t))−∇u (x, y, t)∇v (x, y, t)

)
dA dt (9)

We then apply the Divergence Theorem in the plane
∫

S

∇ · ~F dA =

∮

∂S

~F · n̂ ds
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with ~F = v∇u, where ds denotes arc length, so that the expression in (9)
simplifies to

∫ T

0

(∮

∂(Ω\D)

v (x, y, t)∇u (x, y, t) · n̂ ds −
∫

Ω\D
∇u (x, y, t) · ∇v (x, y, t) dA

)
dt

(10)
By recombining the left and right sides of equation (7) and using the fact

that v(x, y, T ) = 0 we find

∫ T

0

∮

∂Ω

(
u

∂v

∂~n
− v

∂u

∂~n

)
ds dt =

∫ T

0

∮

∂D

u
∂v

∂~n
ds dt (11)

We call this the “Reciprocity Gap” equation; it has been employed produc-
tively for the inverse problem of using impedance imaging to locate cracks,
for example, in [1]. For notational convenience we define

φ (p, q, T ) :=

∫ T

0

∮

∂Ω

(
u

∂v

∂~n
− v

∂u

∂~n

)
ds dt (12)

so that equation (11) may be written

φ(p, q, T ) =

∫ T

0

∮

∂D

u
∂v

∂~n
ds dt (13)

It is extremely important to note that φ(p, q, T ) can be computed from knowl-
edge of u on ∂Ω, since v (which we can choose) is known. By making strategic
choices for v we can extract information about the integral over ∂D on the
right in equation (13) and so glean information about D.

2.3 Observation of Anti-symmetry and Recovering the
Center

Let us use polar coordinates (r, θ) based at the center of the void D to expand
the integral on the right in equation (13), and so obtain (using ∂

~n
= ∂

∂r
on
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∂D)

φ (p, q, T ) = −
∫ T

0

∫ 2π

0

(
u (θ, t)

(a + R cos (θ)− p)2 cos (θ)

8π (T − t)2

)

×
(

e−
(a+R cos(θ)−p)2+(b+R sin(θ)−q)2

4(T−t)

)
dθ dt

−
∫ T

0

∫ 2π

0

(
u (θ, t)

(b + R sin (θ)− q)2 sin (θ)

8π (T − t)2

)

×
(

e−
(a+R cos(θ)−p)2+(b+R sin(θ)−q)2

4T−4t

)
dθ dt (14)

where u(θ, t) denotes u(R, θ, t) in the polar coordinate system based at the
center of D and R is the radius of D.

If we assume that the radius R of the void D is small when compared to
size of the region Ω it is reasonable to take the first term of the Taylor Series
expansion of the exponential quantities in equation (14) about R = 0, which
yields

φ (p, q, T ) ≈ −
∫ T

0

∫ 2π

0

u (θ, t)
(a− p) e−

(a−p)2+(b−q)2

4(T−t) cos (θ)

8π (T − t)2 dθ dt +

∫ T

0

∫ 2π

0

u (θ, t)
(b− q) e−

(a−p)2+(b−q)2

4(T−t) sin (θ)

8π (T − t)2 dθ dt (15)

Examination of equation (15) reveals that φ (p, q, T ) is approximately anti-
symmetric in (p, q) about (a, b), that is, φ(a−x, b−y, T ) = −φ(a+x, b+y, T ).
Since we can compute φ (p, q, T ) for all (p, q) outside of Ω, we should be able
to use this to locate the center of anti-symmetry, that is, the center of the
void D.

In order to recover the center of D we need to identify a number of points
(p, q) which are anti-symmetric about (a, b). This is done by performing
a series of contour plots. Specifically, we find any two points (p1, q1) and
(p2, q2) outside of Ω so that φ(p1, q1, T ) = −φ(p2, q2, T ) (this isn’t hard).
We then construct the corresponding contours or level curves through each
point and determine which two points on the two contours are farthest away
from each other. This should yield points (x1, y1) and (x2, y2) which sat-
isfy φ(x1, y1, T ) = −φ(x2, y2, T ) and are diametrically opposite each other
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through (a, b). The line drawn between these points passes through the cen-
ter of the void (a, b). By performing this computation with several pairs
(p1, q1), (p2, q2) we generate lines which intersect at (a, b). Moreover, inaccu-
racy due to experimental error in the boundary temperature measurements
can be reduced by performing this process for many opposite values of φ and
averaging the resulting estimates of the center (a, b).

2.4 An Example of Anti-symmetry Method

To examine the accuracy of the center finding approach described above, we
use it to find the void center of a test case where

• The domain Ω is the unit disk centered at the origin.

• The void D is centered at the point (0.6, 0.4) with a radius R = 0.1

• The heat flux applied on ∂Ω is

g(θ, t) =

{
sin (πt) sin (θ) , 0 ≤ t ≤ 1
0, else

for 0 ≤ θ < 2π, where here θ corresponds to the point (cos(θ), sin(θ))
on ∂Ω.

• The temperature u (x, y, t) was sampled at 100 uniformly spaced points
on ∂Ω at 300 equally-spaced times from t = 0 to 3.

The forward problem is solved using FemLab. In order to compute the
center we use corresponding points of anti-symmetry for 30 values of φ from
1× 10−3 to 2× 10−3 and use them to calculate estimates for the void center.
We then average these estimates to arrive at an approximate void center of
(0.587, 0.425). Compared to the actual center at (0.6, 0.4), this is an error of
approximately 4%. A plot of the results can be seen in Figure 2.

3 Recovering the Radius via Steady State Ap-

proximation

In this section we provide an easy, fast method to find the radius of a single
void D in the region Ω without any knowledge of the void’s location.
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Figure 2: Locating the void center with anti-symmetry

Apply a heat flux g to the ∂Ω so that a net nonzero heat energy enters
the domain in a finite amount of time, that is,

∫ ∞

0

∫

∂Ω

g ds dt 6= 0.

As time t → ∞ the temperature u(x, y, t) will approach a constant steady-
state temperature within Ω. By using the specific heat of the material, Cp,
the area of D can be found by

Area =
net heat energy input

measured temperature
Cp =

∫ T

0

∮
∂Ω

g ds dt

u∞
Cp

where u∞ denotes the (nonzero) steady-state temperature. If the region Ω is
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the unit disk then

R =

√
π − Area

π
(16)

Of course this approach requires the a priori knowledge or assumption that
D is a disk (or other known shape).

4 A Second Method Using a Harmonic Test

Function

In Section 2.2 we saw that if a test function v (x, y, t) satisfies the backwards
heat equation ∆v + ∂v

∂t
= 0 with v (x, y, T ) = 0 for some fixed value of T then

∫ T

0

∮

∂Ω

(
u

∂v

∂~n
− v

∂u

∂~n

)
ds dt =

∫ T

0

∮

∂D

u
∂v

∂~n
ds dt

If we remove the restriction that the test function must be identically
zero at a final time T then the same derivation found in Section 2.2 yields
the slightly modified equation

∫ T

0

∮

∂Ω

(
u

∂v

∂~n
− v

∂u

∂~n

)
ds dt +

∫

Ω\D
u (x, y, T ) v (x, y, T ) dA

=

∫ T

0

∮

∂D

u
∂v

∂~n
ds dt (17)

in which we pick up an extra term at t = T . Define the functional

φ (v) ≡
∫ T

0

∮

∂Ω

(
u

∂v

∂~n
− v

∂u

∂~n

)
ds dt +

∫

Ω\D
u (x, y, T ) v (x, y, T ) dA (18)

so that equation (17) may be written as

φ(v) =

∫ T

0

∮

∂D

u
∂v

∂~n
ds dt (19)

Note that unlike φ(p, q, T ) from equation (12) we cannot compute φ(v) in
(18) solely from knowledge of u on ∂Ω. However, certain approximations
concerning the integral over Ω \D can be made.
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Without the restriction v(x, y, T ) = 0 we have significantly more freedom
in choosing a test function v (x, y, t). For instance, by examining the back-
wards heat equation (5) it is clear that if we choose a function v (x, y, t) that
is time-independent then the function must be harmonic. One such class of
test functions is

v (x, y, t) =
eη(x+yi)

η
(20)

where η is any nonzero complex scalar. Note also that all derivatives of v
with respect to η are also solutions to the backwards heat equation. These
types of harmonic test functions have often been used in steady-state inverse
problems.

The first integral on the right in equation (18) is calculable because we
know the value of the integrand on ∂Ω for all times t from 0 to T . We will
make an approximation for the second integral. Let u0(x, y, t) denote the
solution to the heat equation on Ω with input flux g and no void D present;
note that u0 is known (or can in principle be computed). We will make the
approximation

∫

Ω\D
u (x, y, T ) v (x, y, T ) dA ≈

∫

Ω

u0 (x, y, T ) v (x, y, T ) dA . (21)

We will not precisely quantify the accuracy of this approximation, but simply
note that it is “intuitively” quite reasonable—if D is small the u ≈ u0 and
the integrals above ought to be close. Indeed, in the case that v ≡ 1 the
integrals are identical. To see this note that the integral on the left in (21)
when v ≡ 1 is

∫

Ω\D
u (x, y, T ) dA =

∫ T

0

∫

Ω\D
ut (x, y, T ) dA dt

=

∫ T

0

∫

Ω\D
4u (x, y, T ) dA dt

=

∫ T

0

∫

∂Ω

∂u

∂~n
ds dt

=

∫ T

0

∫

∂Ω

g ds dt

where we use ut = 4u, the Divergence Theorem, and ∂u
∂~n
≡ 0 on ∂D. Pre-

cisely the same argument (without D) shows that the integral on the right
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in (21) has exactly the same value (essentially the total input energy from
the flux) when v ≡ 1.

Thus given a test function v (x, y, t) we now have a way to calculate an
approximate numerical value for φ (v), as

φ (v) ≈
∫ T

0

∮

∂Ω

(
u

∂v

∂~n
− v

∂u

∂~n

)
ds dt +

∫

Ω

u0 (x, y, T ) v (x, y, T ) dA (22)

Note that this approximation to φ(v) can be computed from known data.

4.1 Finding The Center of a Void

As shown above, we can approximately calculate a numeric value for φ(v) for
any harmonic test function v, in particular, for v as defined by (20), or for
∂kv/∂ηk. We would like to use this information to find the center of a void
in the domain Ω. In order to analyze φ (v), let’s look at the right hand side
of equation (19) and compute the normal derivative of the test function. For
the test function v we have

∂v

∂~n
= ∇v · n̂

= eη(x+yi) 〈1, i〉 ·
〈

x√
x2 + y2

,
y√

x2 + y2

〉

We need to compute ∂v
∂~n

on ∂D, so as before we assume D is a circle of radius R
centered at (a, b), with ∂D parameterized as (x, y) = (a + R cos θ, b + R sin θ)
for 0 ≤ θ < 2π. We find

∂v

∂~n
= eη(a+R cos θ+i(b+R sin θ)) (cos θ + i sin θ)

= eiθeη(a+bi)eηR(cos θ+i sin θ)

= eiθeη(a+bi)eηReiθ

≈ eiθeη(a+bi) (23)

where in the last step we assume that the radius R of the void is small, so
eηReiθ

= 1 + O (R).
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If we change the order of integration in equation (19) and make use of
(23) we obtain

φ (v) =

∫ T

0

∮

∂D

u
∂v

∂~n
ds dt

≈
∫ T

0

∫ 2π

0

u (R, θ, t) eiθeη(a+bi)R dθ dt

≈ Reη(a+bi)

∫ 2π

0

∫ T

0

u (R, θ, t) dt eiθ dθ (24)

Similar analysis on φ
(

∂kv
∂ηk

)
for any k ≥ 1 yields

φ

(
∂kv

∂ηk

)
≈ R (a + bi)k eη(a+bi)

∫ 2π

0

∫ T

0

u (R, θ, t) dt eiθ dθ

= (a + bi)k φ (v) (25)

Therefore, we can approximate the center of a single void by

a + bi ≈
φ

(
∂v
∂η

)

φ (v)
(26)

4.2 Finding the Size of a Void

As noted in equation (24), φ (v) and R are directly related. However, because
we do not know the value of the temperature function u (x, y, t) on ∂D, we
cannot directly calculate R from φ (v). In [2] the authors prove that in the
steady-state heat conduction case one has the approximation

φ (v) ≈ 2eη(a+bi)

∫ 2π

0

∫ T

0

u0 (R, θ, t) dt eiθ dθ + o(R2) (27)

where the integral itself is proportional to R2. We believe that such an
approximation remains valid in the time-dependent case (although we haven’t
fully written out the proof).

If we assume that the radius R of the void is small we can use the ap-
proximation that u0 (R, θ, t) ≈ u0 (a, b, t) + R∇u0 (a, b, t) · n̂ + O(R2) on ∂D
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(easily justified with a Taylor series in the polar variable r) to obtain

φ(v) ≈ 2eη(a+bi)

∫ T

0

u0(a, b, t)

(∫ 2π

0

eiθ dθ

)
R dt

+ 2Reη(a+bi)

∫ 2π

0

(∫ 2π

0

∇u0 (a, b, t) · n̂ eiθ dt

)
R dθ

= 2R2eη(a+bi)

∫ 2π

0

∫ T

0

∇u0 (a, b, t) · 〈cos θ, sin θ〉 eiθ dt dθ

= 2πR2eη(a+bi)

∫ T

0

∇u0 (a, b, t) · 〈1, i〉 dt (28)

since the integral
∫ 2π

0
eiθ dθ in the first line above vanishes.

Recall that φ (v) is computable from the boundary data as shown in equa-
tion (18). Note also that the void center (a, b) has already been determined,
and so ∇u0 (a, b, t) is computable. We can easily find the radius R of a single
void D from equation (28) as

R =

√
φ (v)

2πeη(a+bi)
∫ T

0
∇u0 (a, b, t) · 〈1, i〉 dt

. (29)

4.3 An Example

We apply the above method to an example where

• The domain Ω is the unit disk centered at the origin

• The void D is centered at the point (0.4, 0.6) with a radius R = 0.1

• The heat flux applied on ∂Ω is

g(θ, t) =

{
sin (πt) sin (θ) , 0 ≤ θ ≤ π/2 and 0 ≤ t ≤ 1
0, else

• The temperature u (x, y, t) is sampled at 100 uniformly spaced points
on ∂Ω at 100 uniformly spaced times from t = 0 to 1.

As in the last example the forward problem is solved using FemLab, as is
the boundary value problem for u0 (to compute ∇u0(a, b, t) after the center
(a, b) is known). We use η = 1 − 2i as the parameter, which yields a void
center estimate of (a, b) = (0.404, 0.592) and a radius estimate of R = 0.117.
This is an error of approximately 1.2% for the center estimate and 17% for
the radius estimate.
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4.4 Dependence upon η

We find that most choices for η yield an accurate estimate for the void center
and radius. However, choosing the parameter to be close to zero frequently
causes large errors in the estimate. This is likely due to the division by
the parameter η in the definition of the test function, equation (20). Closer
examination shows that there are other apparent singularities in the center
finding function equation (26) that we cannot explain without further anal-
ysis. Figure 3 gives an example of the dependence of these estimates on the
parameter η. It is a graph of the imaginary part (or y coordinate) of the es-
timated center from equation (26), where η ranges over the complex domain
B = ((−5, 5)× (−5i, 5i)) \{0}.

Figure 3: Imaginary Part of Center Finding Function

Of course the resulting surface should be a flat constant 0.6, but certain
choices for η yield wildly inaccurate estimates. Further analysis is necessary
to better characterize this dependence.
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5 Extension to Multiple Voids

The methods described in Section 4 can easily be generalized to a situation
in which the domain Ω contains multiple voids D1, D2 . . . Dn. Without loss
of generality, we will proceed with the two-void derivation. The basic idea is
similar to that of [4].

The forward problem is similar to the one-void case,

∂u

∂t
−∆u = 0 on Ω

∂u

∂~n
= g on ∂Ω

∂u

∂~n
= 0 on ∂D1

∂u

∂~n
= 0 on ∂D2

u(x, y, 0) = 0.

Figure 4: Two Void Problem

5.1 Finding the Centers of Multiple Voids

In the single-void problem we found that the functional φ (v) defined by
equation (22) is approximable with the given boundary data and that

φ (v) ≈
∫ T

0

∮

∂D

u
∂v

∂~n
ds dt .

14



An analogous derivation for a two-void problem yields

φ (v) =

∫ T

0

∮

∂D1

u
∂v

∂~n
ds dt +

∫ T

0

∮

∂D2

u
∂v

∂~n
ds dt

≈ J1e
η(a1+b1i) + J2e

η(a2+b2i)

where

J1 =

∫ T

0

∮

∂D1

u(θ, t)eiθ ds dt

J2 =

∫ T

0

∮

∂D2

u(θ, t)eiθ ds dt

(a1, b1) is the center of the void D1

(a2, b2) is the center of the void D2

and as before θ denotes angular position on ∂D and φ(v) is precisely as
already defined by equation (22). The equations above are simply the two-
void version of equation (24). We similarly find that

φ(∂kv/∂ηk) ≈ J1(a1 + b1i)
keη(a1+b1i) + J2(a2 + b2i)

keη(a2+b2i)

analogous to equation (25).
Let ψ(η) denote the quantity φ(v) considered as a function of the complex

parameter η. We have then

ψ (η) = J1e
η(a1+b1i) + J2e

η(a2+b2i) (30)

and
ψ(k) (η) = J1(a1 + b1i)

keη(a1+b1i) + J2(a2 + b2i)
keη(a2+b2i). (31)

Note that we can compute ψ(η) and ψ(k)(η) for any k ≥ 1 and nonzero η ∈ C.
Since ψ (η) is a linear combination of two exponentials in η it must satisfy

ψ′′ (η) + c2ψ
′ (η) + c1ψ (η) = 0 (32)

for some scalars c1 and c2. Any such second order constant coefficient differ-
ential equation has a solution

ψ (η) = d1e
r1η + d2e

r2η (33)
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of the same form as equation (30). If we can determine the constants c1 and
c2 in equation (32) we can solve the resulting ODE to obtain a solution of the
form in (33). This will allow us to determine the location of the centers of
the voids, since ak + bki = rk (compare equations (30) and (33)). Indeed, the
constants r1 and r2 are simply the roots r = r1, r = r2 of the characteristic
equation

r2 + c1r + c2 = 0 (34)

for the ODE (32).
We can determine c1 and c2 in equation (32) by choosing two (or more)

distinct nonzero ηn and then computing ψ(k)(ηn) for k = 0, 1, 2. This creates
two or more linearly independent versions of equation (32) from which we
can solve uniquely for the constants c1 and c2. We then find the roots of (34)
to determine the void centers.

5.2 Finding the Sizes of Multiple Voids

Comparing equations (30) and (33) makes it clear that

∫ T

0

∮

∂Dk

u ds dt = dk

By a similar derivation to that of Section 4.2, we find that

∫ T

0

∮

∂Dk

u ds dt = 2πR2
k

∫ T

0

∇u0 (ak, bk, t) · 〈1, i〉 dt .

If we determine the coefficients d1 and d2 in equation (33) we will obtain the
radii of the two voids as

Rk =

√
dk

2π
∫ T

0
∇u0 (ak, bk, t) · 〈1, i〉 dt

(35)

We can obtain d1 and d2 in a manner similar to that which yielded the
values of r1 and r2. Specifically, we compute ψ(η1) and ψ(η2) for two distinct
ηk; note that the centers r1 = a1 + b1i and r2 = a2 + b2i are already known.
We obtain a linear system of two equation in unknowns d1 and d2,

ψ (η1) = d1e
r1η1 + d2e

r2η1

ψ (η2) = d1e
r1η2 + d2e

r2η2 . (36)
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We can solve this system for the variables d1 and d2, then substitute them
into equation (35) to actually find the radii of the two voids.

It should be clear that an entirely analogous procedure can be developed
for three or more voids. Moreover, one could employ the same ideas as in [4]
to make an a priori estimate of the number of voids present.

5.3 Multiple Void Center Finding Example

We tested this algorithm with an example defined as:

• The domain Ω is the unit disk—i.e. it is a disk centered at the origin
with radius R = 1

• The void D1 is centered at the point (0.53, 0.17) with radius R = 0.18

• The void D2 is centered at the point (0.0,−0.8) with radius R = 0.07

• The heat flux applied on ∂Ω is

g(θ, t) =

{
sin (πt) sin (θ) , 0 ≤ t ≤ 1
0, else

• The temperature u (x, y, t) was sampled at 100 uniformly spaced points
of ∂Ω at 100 times from t = 0 to 1.

As in the previous example the forward problem is solved using FemLab,
as is the boundary value problem for u0 (to compute ∇u0(a, b, t) after the
center (a, b) is known). From this data our algorithm calculated a void center
estimate for D1 of (0.716, 0.390) and for D2 of (0.061,−0.793). This is an
error of 51% for D1 and 7.7% for D2. We note that void D2 is

1. smaller in radius that D1

2. closer to ∂Ω than D2

3. closer to the maxima of the input heat flux g, which occur at θ = π
2
,−π

2
.

It may seem counterintuitive that the smaller size of D2 would assist in
locating the void. However, the void D2’s location near the boundary of
the domain and its proximity to the maximum heat flux make it easier to
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find. And of course D2 better fits the “small radius” assumption in our
approximations.

We did not attempt to compute an estimate for the radii because the
error inherent in the center estimates would compound itself with any error
in the radius-finding algorithm.

6 Conclusion

We have developed several methods for characterizing voids in a bounded,
two-dimensional domain Ω based upon thermal energy flow. By controlling
the energy that enters the domain and measuring the temperature along the
boundary we can locate the center of a single void with good accuracy by
finding the center of anti-symmetry of a numerically calculable “reciprocity
gap” function. Having found the center, we can then determine the size of
the void D, at least if we allow the temperature to approach steady-state.

We also developed a second independent approach, obtained by using the
reciprocity gap formula with slightly different test functions. This method
yields very accurate results for a single void and has the advantage of gen-
eralizing to two or more voids. However, the second method exhibits an as
yet unquantified dependence on the complex parameter η used in the recon-
struction. In certain cases, poor choice of this parameter yields extremely
inaccurate (often impossible) solutions. Conversely, while the first method
does not suffer from this type of problem, it requires significantly more pro-
cessing time to locate the center. The second method is extremely efficient,
and requires only the computation of a few boundary integrals, a couple small
linear system solves, and the solution of a low-degree polynomial.

Several tasks remain. The approximations used in either method, while
intuitively reasonable, are not fully justified, nor do we completely under-
stand when they fail. A better understanding of these approximations might
lead to more refined reconstruction algorithms. We would also like to imple-
ment the ideas from [4] for estimating the number of voids present, and for
developing an algorithm that makes use of more than one input flux.

The last two-void example also illustrates that the input flux may signif-
icantly affect the stability with which one can locate any given void. Some
analysis is in order to quantify how the input flux affects resolution. Finally,
it would useful to generalize the results to non-circular voids, cracks, or even
three dimensions.
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