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1. Introduction

Impedance imaging has been widely studied in the past twenty years, as a means

for non-destructively examining the internal electrical conductivity of an object from

exterior measurements. The general inverse problem is quite ill-posed, but with a

priori information about the nature of the conductivity one can usually obtain better

results. In this paper we examine a simple generalization of the so-called reciprocity

gap approach. In [5] the reciprocity gap approach was used to locate a single linear

crack which completely blocks current flow. We adapt the method to a more general

setting in which the crack allows the partial transmission of current according to some

constitutive law. It has previously been noted ([6]) that even in this situation the

reciprocity gap approach can still be used to locate a single linear crack, but we show

how to constructively determine the transmission law across the crack. The latter

problem is quite ill-posed. We provide insight into the nature of the ill-posedness, and

a simple regularization scheme, and numerical examples.

2. The Forward Problem

Let Ω be a bounded open region in R2 with piecewise C2 boundary ∂Ω and let σ be a

line segment (a “crack”) inside Ω at a positive distance from ∂Ω. Let u(x, y) denote the
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electrical potential inside Ω. We assume that, after suitable re-scaling, u satisfies

∂2u

∂x2
+

∂2u

∂y2
= 0 (1)

in Ω \ σ. On ∂Ω we assume an electrical current flux g ∈ L2(∂Ω) is applied, so that

∂u

∂n
= g (2)

on ∂Ω, where n is a unit outward normal vector on ∂Ω.

We model the effect of the crack σ on the current flow as follows. On σ, let n

denote a consistently oriented unit normal vector. We use a “+” to denote the side of

the crack into which n points and a “−” to denote the other side of the crack. We will

use a superscript “+” to denote the limiting value of a quantity from the plus side of

σ and a superscript “−” to denote the limiting value from the minus side. We assume

that ∂u
∂n

is continuous across σ (this follows from conservation of charge) and that on σ

we have the jump condition

∂u

∂n
(s) = F ([u](s)) (3)

where [u](s) = u+(s)− u−(s) is the jump in u across σ at a point s and F is a function

which governs the nature of the current flow across σ. The function F relates the rate

at which current flows across the crack to the potential difference on opposing sides of

the crack, so the crack acts as a “contact resistance” to the flow of current. Physical

considerations suggest that we should require F (0) = 0, that F should be increasing, and

continuous. The case in which F (x) ≡ 0 models an insulating crack, which completely

blocks the flow of current. In the Appendix we give a brief proof of the existence,

uniqueness, and regularity of a solution (1)-(3), with the normalization
∫

∂Ω
u ds = 0,

where ds denotes arc length, under the assumption that F satisfies a polynomial growth

bound.

The inverse problem of interest is to determine σ and F from an input current

flux g and measured Dirichlet data u on ∂Ω. The case F ≡ 0 has been well-studied,

at least in two dimensions. In [8] it was shown for the perfectly insulating case that

by imposing two different input current fluxes of a specified form and measuring the

resulting Dirichlet data one can uniquely identify any crack. In [2] the authors establish

a Lipschitz stability estimate for the problem of recovering an insulating linear crack. See

[7] for a more extensive survey of the literature on crack identification using impedance

imaging.

In [5] the authors use a beautiful and simple approach with cleverly chosen “test

functions” to recover the location of an insulating crack from a single suitable current

flux/potential pair on ∂Ω. As noted in [6], the method actually picks out the jump

[u], which can be shown to necessarily coincide with the crack σ, without regard to the

specific condition ∂u
∂n

= 0 (provided ∂u
∂n

is continuous across σ). We show how a simple

generalization of the approach allows one to recover ∂u
∂n

on the crack, and so estimate

the function F on whatever range is assumed by [u] on the crack.
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3. Crack Identification

3.1. Extended Reciprocity Gap Formula

Let u be the solution to (1)-(3) and v a function which is harmonic on Ω \ σ with ∂v
∂n

continuous across σ (but v may jump over σ). An easy consequence of Green’s Second

Identity (provided u and v have sufficient regularity, as shown in the Appendix) is
∫

σ

[v]F ([u]) ds =

∫

σ

[u]
∂v

∂n
ds−

∫

∂Ω

(
u

∂v

∂n
− vg

)
ds (4)

where we have used (2) and (3). In [5] the authors use only functions v which are

harmonic on all of Ω (hence [v] ≡ 0 on σ) so the left side of (4) is zero and we obtain

the so-called “Reciprocity Gap Formula”
∫

σ

[u]
∂v

∂n
ds =

∫

∂Ω

(
u

∂v

∂n
− vg

)
ds. (5)

Note that for any chosen “test function” v, we can compute the right side of equation

(5) from exterior boundary data, and hence the value of the left side. From suitably

chosen test functions v we can extract information about σ and [u]. Once σ and [u] are

known we may similarly use suitably chosen test functions v in equation (4) to extract

information about F ([u]), and so the function F . Indeed, our test functions in equation

(4) will have ∂v
∂n
≡ 0 on σ, so the first integral on the right in (4) is not needed.

We first give a very brief account of how the authors in [5] use equation (5) to

identify σ and [u], a necessary prelude to what follows. We then show how to use

equation (4) with a suitable class of test functions to recover F ([u]) and so information

about F , and discuss the ill-posedness of and appropriate regularization for the process.

3.2. Identification of σ and [u]

Let the linear crack σ lie at an angle θ with θ ∈ (−π/2, π/2] with respect to the x axis.

Define harmonic functions ψ1(x, y) = x and ψ2(x, y) = y and use each in place of v in

equation (5). We find (since both ∂ψ1

∂n
and ∂ψ2

∂n
are constant on σ) that

− sin(θ)

∫

σ

[u]ds =

∫

∂Ω

(
u
∂ψ1

∂n
− ψ1g

)
ds (6)

cos(θ)

∫

σ

[u]ds =

∫

∂Ω

(
u
∂ψ2

∂n
− ψ2g

)
ds. (7)

Provided that
∫

σ
[u] ds 6= 0, we can solve equations (6) and (7) for θ and

∫
σ
[u] ds to find

θ = arctan(−c1/c2)∫

σ

[u] ds = sgn(c2)
√

c2
1 + c2

2

where c1 and c2 denote the right side of equation (6) and (7), respectively. Thus θ is

uniquely determined in the range −π
2

< θ ≤ π
2
. In what follows we assume that the

applied flux g yields a non-zero value for
∫

σ
[u] ds.
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Since we know θ, let us rotate coordinates so that σ lies parallel to the x axis, on a

line y = λ for some constant λ. Inserting the harmonic test function ψ3(x, y) = x2 − y2

into equation (5) in place of v yields

−2λ

∫

σ

[u]ds =

∫

∂Ω

(
u
∂ψ3

∂n
− ψ3g

)
ds. (8)

We obtain λ = −c3/(2
∫

σ
[u]ds), where c3 denotes the right side of equation (8). This

completely identifies the line on which the crack σ lies.

The final step is to locate the endpoints of the crack on this line, and find [u]

along σ. We make a translational change of coordinates so that σ lies on the x axis,

and scale coordinates so that the x axis penetrates the region Ω at x = 0 (specifically,

infx∈R{x : (x, 0) ∈ Ω} = 0) and exits at x = 1 (so supx∈R{x : (x, 0) ∈ Ω} = 1; it doesn’t

matter if the x axis leaves Ω at intermediate points). In Figure 1 below this portion

of the x axis would correspond to the solid (thin) line segment of length L on which σ

lies. We expect that [u] is non-zero on σ. Of course u is smooth away from σ, and we

may thus extend [u] continuously as a zero function along the x axis away from σ, since

standard elliptic regularity results show that [u] approaches zero at the crack endpoints.

Define harmonic test functions φk(x, y) = 1
kπ

sin(kπx)ekπy for k ≥ 1. Using φk for

v in the reciprocity gap formula (5) yields
∫ 1

0

sin(kπx)[u](x)dx =

∫ (
u
∂φk

∂n
− φkg

)
ds (9)

for each k ≥ 1. We can thus recover the Fourier sine expansion of the continuous

function [u] on (0, 1) from the boundary data. If ak denotes the right side of equation

(9) then we have

[u](x) =
∞∑

k=1

2ak sin(kπx) (10)

Define the support of [u] as S = cl({(x, 0) : [u](x) 6= 0}) where “cl” denotes closure

(as a subset of the x-axis). It’s clear that [u](x) ≡ 0 away from σ, so S ⊆ σ. In [5] the

authors prove, for the case F ≡ 0

Lemma 3.1 If
∫

σ
[u] ds 6= 0 then the set S coincides with σ, that is, [u] cannot vanish

on any open portion of σ.

As noted in [6], the proof extends to the present case without modification—one only

needs a boundary condition which induces a jump [u] on σ, and continuity of ∂u
∂n

.

Remark 3.1 One can also use test functions φ̃k(x, y) = 1
kπ

sin(kπx)e−kπy to recover [u]

(as well as other similar functions, e.g., cosines in place of sines). The choice of sign in

the exponential portion is of practical significance, for after rotation and scaling so that

σ lies on the x axis, one finds that integration against φk or φ̃k weights different portions

of the boundary data differently. The data on that portion of ∂Ω near σ contains the

most information about [u] (relative to any noise present). One would then choose the
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family of test functions which weights this portion of the data more heavily, and so ob-

tain the most accurate estimate of ak. In practice, one could (after rotation/translation

so that σ is on the x axis) let D = min
(x,y)∈∂Ω

y and d = max
(x,y)∈∂Ω

y, then use φk if |d| ≤ |D|,
or use φ̃k otherwise. The situation is illustrated below in Figure 1, in which the choice

φk would lead to a more stable estimate.

D

L

d σ Ω

Figure 1: Geometry for crack recovery.

4. Recovering the Current Flux and F

We now make use of equation (4) and test functions v which have a non-zero jump on

σ. With suitable test functions we can extract the expansion coefficients of F ([u]) on σ

with respect to Chebyshev polynomials, rather than trigonometric functions as for [u].

We choose a coordinate system so that the crack σ coincides with the set {(x, 0) :

0 < x < 1} in R2. We also let z = x + iy to identify R2 with C. Define

φ(z) = 1− 2z + 2z
√

1− 1/z.

The function φ(z) is analytic in C \ σ. It’s not hard to check that

lim
y→0+

φ(x + iy) = (1− 2x) + 2i
√

x(1− x),

lim
y→0−

φ(x + iy) = (1− 2x)− 2i
√

x(1− x) (11)

for 0 < x < 1. We define harmonic functions wk on Ω \ σ as

wk(x, y) = Im(φk(x + iy)) (12)

for k ≥ 1.

Lemma 4.1 For wk as defined by equation (12) we have

[wk](x) = 4(−1)k−1Uk−1(2x− 1)
√

x(1− x)
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for 0 < x < 1, where Uk denotes the kth degree Chebyshev polynomial of the second kind

on [−1, 1] and [wk](x) = limy→0+(wk(x, y)− wk(x,−y)).

Proof: From equations (11) and the definition of wk we find that

[wk](x) = Im(((1−2x)+2i
√

x(1− x))k−((1−2x)−2i
√

x(1− x))k). (13)

Define polynomials Pk and Qk (in x) as Pk = Re(((1 − 2x) + 2i
√

x(1− x))k) and

Qk = Im(((1 − 2x) + 2i
√

x(1− x))k)/
√

x(1− x) (it’s easy to see that Qk is in fact a

polynomial).

We can derive a simple recurrence relation for the Pk and Qk. We have, by definition

of the Pk and Qk,

Pk + i
√

x(1− x)Qk = ((1− 2x) + 2i
√

x(1− x))(Pk−1 + i
√

x(1− x)Qk−1)

= (1− 2x)Pk−1 − 2x(1− x)Qk−1

+ i
√

x(1− x)(2Pk−1 + (1− 2x)Qk−1)

so that the Pk and Qk satisfy the coupled recurrence relations

Pk = (1− 2x)Pk−1 − 2x(1− x)Qk−1 (14)

Qk = 2Pk−1 + (1− 2x)Qk−1. (15)

In fact, with strategic use of (14) and (15) we can derive a recurrence for the Qk alone,

Qk = 2Pk−1 + (1− 2x)Qk−1

= 2((1− 2x)Pk−2 − 2x(1− x)Qk−2) + (1− 2x)Qk−1

= 2

(
(1− 2x)(

1

2
Qk−1 − 1− 2x

2
Qk−2)− 2x(1− x)Qk−2

)
+ (1− 2x)Qk−1

= 2(1− 2x)Qk−1 −Qk−2.

Similar computations show that the quantity Q̃k = Im(((1 − 2x) −
2i

√
x(1− x))k)/

√
x(1− x) satisfies the same recursion, and in fact Q̃k = −Qk. As a

result, from equation (13) we see that [wk](x) = (Qk− Q̃k)
√

x(1− x) = 2Qk

√
x(1− x).

Now the Chebyshev polynomials of the second kind, Uk(x), satisfy the recurrence

relation Uk(x) = 2xUk−1(x) − Uk−2(x) with U0(x) = 1 and U1(x) = 2x. From this

it is simple to check that the quantity Rk(x) = 4(−1)k−1Uk−1(2x − 1) satisfies the

recurrence relation Rk = 2(1 − 2x)Rk−1 − Rk−2, identical to that of the Qk. More-

over, Q1 = R1/2 and Q2 = R2/2, so we conclude that Qk = Rk/2 for all k ≥ 1.

This proves that Qk = 2(−1)k−1Uk−1(2x − 1), and hence [wk](x) = 2Qk

√
x(1− x) =

4(−1)k−1Uk−1(2x− 1)
√

x(1− x) as asserted. ¤

Computations similar to those in Lemma 4.1 show that ∂wk

∂n
(x) = (−1)k2kUk−1(2x−

1) (and is continuous across σ). Additionally, one can show that the harmonic functions

w̃k = Im(φ−k(x + iy))

satisfy [w̃k] = −4(−1)k−1Uk−1(2x − 1)
√

x(1− x) while ∂w̃k

∂n
(x) = (−1)k2kUk−1(2x − 1)

on σ. This is easily shown by replacing φ(z) by 1/φ(z) and noting that 1/φ(z) =

1− 2z − 2z
√

1− 1/z.
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Define test functions

vk(x, y) = wk(x, y)− w̃k(x, y). (16)

From Lemma 4.1 and following remarks we find that [vk](x) = 8(−1)k−1Uk−1(2x −
1)

√
x(1− x) while ∂vk

∂n
≡ 0 on σ = [0, 1]. The vk are harmonic on Ω \ σ.

The Chebyshev polynomials Uk(x) form an orthogonal basis for L2(−1, 1) with

respect to the weight function w(x) =
√

1− x2. From this a straightforward change of

variables shows that

Theorem 4.1 The functions [vk](x) = 8(−1)k−1Uk−1(2x − 1)
√

x(1− x), k ≥ 1, form

an orthogonal basis for L2(σ) (where σ is identified with the interval (0, 1)) with respect

to the weight function w(x) = 1/
√

x− x2. Also,
∫ 1

0
[vk]

2(x)/
√

x− x2 dx = 8π for all

k ≥ 1.

With v = vk we have from equation (4)
∫

σ

[vk]F ([u]) dx = −
∫

∂Ω

(
u
∂vk

∂n
− vkg

)
ds. (17)

Let ck denote the right side of equation (17), computable from boundary data and the

recovered estimate of σ. Then ck is the expansion coefficient for
√

x(1− x)F ([u](x)] on

σ, for

ck =

∫

σ

[vk]F ([u]) dx =

∫

σ

[vk]
√

x(1− x)F ([u])
dx√

x(1− x)
.

We can recover F ([u]) on σ as

F ([u](x)) =
1

π

∞∑

k=1

(−1)k−1ckUk−1(2x− 1). (18)

From knowledge of [u] and F ([u]) on σ, we recover the function F on whatever

range [u](x) assumes over the crack σ.

5. Computational Examples and Regularization

In the following examples we take Ω to be the unit disk in R2. In all cases the crack

σ is a line segment with one end at the point (−0.1, 0.7), of length 0.7, at an angle of

−0.1 radians with respect to the x axis; the situation is illustrated in Figure 2.
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–1

–0.5

0.5

1

–1 –0.5 0.5 1

Figure 2: The crack to be recovered.

We attempt to recover σ from Dirichlet data on ∂Ω, with imposed current flux of the

form g(t) = A sin(t) for some constant A, where ∂Ω is parameterized as (cos(t), sin(t)),

0 ≤ t < 2π. The boundary condition on σ is given by (3) with various choices for the

function F . For each case we first recover σ (and [u] on σ) and then ∂u
∂n

on σ.

The boundary value problem (1)-(3) was solved by converting the problem to a

coupled system of boundary integral equations for u on ∂Ω and [u] on σ, discretizing

via Nytröm’s Method, then solving the resulting system of nonlinear equations with

Newton’s method (with some care taken on σ, for the integral equations have singular

kernels there). The solutions on ∂Ω were accurate to about four significant figures,

based on comparison to closed form solutions.

5.1. Example 1

We first illustrate with a “noise-free” reconstruction, and no regularization, save for trun-

cation of the relevant series expansions. We consider the cases F (x) = x and F (x) = 5x

and input flux g(t) = sin(t). In each case we first use equations (6)-(8) to identify the

line on which σ lies. Figure 3 shows the reconstruction of [u](s) using equations (9) and

(10) with 20 Fourier modes, for F (x) = x and F (x) = 5x, respectively. Here s = 0 to

s = L indexes position as a function of arc length along the line on which the crack lies,

with s = 0 the point at which the line intersects ∂Ω on the left and s = L the other

position at which the line intersects ∂Ω (in this case L ≈ 1.45); refer back to Figure 1.

We identify σ as the support of [u], although this is not exact since the Fourier series is

truncated. We use the approximation σ = {s : [u](s) ≥ 0.2 max([u])} to estimate σ.
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Jump Reconstruction, F(x)=x

0

0.1

0.2

0.3

0.4

[u]

0.2 0.4 0.6 0.8 1 1.2 1.4
s

Jump Reconstruction, F(x)=5x

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

[u]

0.2 0.4 0.6 0.8 1 1.2 1.4
s

Figure 3: Estimated jumps [u](s) for F (x) = x, and F (x) = 5x.

In each case the crack, and in particular the endpoints, are located to an accuracy

of about 0.005. Visually the true and estimated cracks are identical.

We next use equations (17)-(18) to estimate ∂u
∂n

on σ. The computation of this

quantity is significantly more ill-posed—even the small error in the forward solver be-

comes significant—and for this noise-free example we simply truncate the Chebyshev

polynomial expansion after 4 terms. The flux reconstructions are shown below in Figure

4, with the horizontal axis in each case corresponding to position s along the estimated

crack σ (of length 0.7).

Flux Reconstruction, F(x)=x

0.1

0.2

0.3

0.4

0.5

du/dn

0 0.1 0.2 0.3 0.4 0.5 0.6
s

Flux Reconstruction, F(x)=5x

0.55

0.6

0.65

0.7

0.75

0.8

0.85

du/dn

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
s

Figure 4: Estimated flux ∂u
∂n

for F (x) = x, and F (x) = 5x.

By plotting [u](s) versus ∂u
∂n

(s) we obtain an estimate of the function F (x) over

whatever range [u] assumes on the crack. Figure 5 below shows the result for each case

above, superimposed over the actual graph of F (x) (the straight lines) in each case.
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Reconstruction, F(x)=x

0

0.1

0.2

0.3

0.4

0.5

F([u])

0.1 0.2 0.3 0.4 0.5
[u]

Reconstruction, F(x)=5x

0

0.2

0.4

0.6

0.8

1

F([u])

0.05 0.1 0.15 0.2
[u]

Figure 5: F ([u](s)) versus [u](s) for F (x) = x, and F (x) = 5x.

In each case we use only the central 90 percent of the crack (that is, 0.07 < s < 0.63 for

a crack of length 0.7) to construct the plot for F , for the estimation of [u] and especially
∂u
∂n

on σ is most unstable near the crack tips, where ∇u is singular. Still, the estimates

for F (x) = x and F (x) = 5x are reasonably accurate over the entire range.

5.2. Regularization

In this section we examine a simple regularization method, in essence a “low-pass” filter,

which is applied to the series reconstructions of [u] and ∂u
∂n

; this yields an improved

estimate of F , especially with noisy data. We apply the regularization method to

examples involving a nonlinear F in the next section.

In what follows let f(s) denote either [u](s) or ∂u
∂n

(s) on σ, as appropriate. We seek

to reconstruct f as

f(s) =
∞∑

k=1

ckψk(s) (19)

for an appropriate set of orthogonal functions ψk, where the ck are computed from

boundary data. However, in presence of noise our coefficients ck contain errors ek whose

magnitudes increase rapidly with k, destroying the reconstruction. Let c̃k = ck + ek

denote the noisy coefficients. Rather than use (19) with the we approximate f with a

weighted reconstruction f̃ where

f̃(s) =
∞∑

k=1

bkc̃kψk(s) (20)

for weights bk, chosen to minimize the mean-square error between f̃ and f .

To determine the bk, subtract equations (19) and (20), square, and integrate over

σ with respect to the appropriate weighting function ω(x) (with respect to which the

ψk form an orthonormal family) to find

‖f̃ − f‖2
L2(σ) =

∞∑

k=1

((bk − 1)ck + bkek)
2.
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If we take weights bk = ck/(ck + ek) then we trivially obtain ‖f̃ − f‖2
L2(σ) = 0;

unfortunately, we don’t know the ck or ek. However, we can make reasonable inferences.

From standard elliptic regularity results one can show that if σ is parameterized in s

for 0 < s < 1 then we should have [u](s) = h(s)
√

s− s2 for some smooth function h(s).

As a result, we expect ck, as a function of k, to behave as
∫ 1

0

sin(kπs)[u](s) ds =

∫ 1

0

sin(kπs)h(s)
√

s− s2 ds.

Integrating by parts twice on the right above (taking derivatives off of the sin or cos)

shows that we should expect ck = O(1/k2). A sensible choice is thus to use ĉk = c̃1/k
2

in the reconstruction of [u]; we a similar bound for the reconstruction of ∂u
∂n

.

To compute the appropriate bk we must also estimate the ek, which we bound below

as |ek| ≤ Ekε for certain constants Ek, where ε quantifies the noise level in the data. We

then take weights

bk =
ĉk

ĉk + εEk

. (21)

Note that 0 ≤ bk ≤ 1. Since the value of the Ek will grow with k, the bk will decay

to zero, so that formula (20) is essentially a low-pass filtered reconstruction. Note also

that the estimates for Ek (and so the bk) will differ for the estimation of [u] and ∂u
∂n

on

σ. The use of a weighted reconstruction (20) with bk defined by (21) may be viewed

as a type of Wiener filtering, to reconstruct a smoothed and noise-polluted signal from

measurements. Moreover we show below that as ε → 0 this regularization approach

yields ‖f̃ − f‖2
L2(σ) → 0.

In estimating the Ek, we first consider the case f = [u]. Let the measured Dirichlet

boundary data contain noise with supremum norm ε (for simplicity, we’ll assume the

input current flux g is known exactly). For [u] with reconstruction formulae (10) and

(9) one can easily estimate (using |∂φk

∂y
| ≤ √

2ekπy and accounting for the rescaling that

precedes equation (9)) that the induced errors ek satisfy

sup |ek| ≤
√

2ε|∂Ω|ekπd/L. (22)

where |∂Ω| denotes the length of ∂Ω, and d and L are as in Figure 1; note that both d

and L are known once the crack line has been identified via equation (8). We thus have

|ek| ≤ Ekε where Ek =
√

2|∂Ω|ekπd/L. We use this value for Ek to reconstruct [u] via

equations (21) and (20).

A similar bound can be obtained for appropriate Ek to use in the estimation of ∂u
∂n

. A

series expansion of φ(z) shows that on z = Reiθ we have |φ(Reiθ)| = e−iθ

4R
+O(1/R2), and

also |1/φ(Reiθ)| = −4Reiθ+O(1). We then have vk(z) ≈ (−4R)k sin(kθ) for z = Reiθ for

R >> 1 and sup∂Ω |vk| ≈ (4R)k where R is the maximum distance from σ = [0, 1] to ∂Ω.

For the original domain we obtain sup∂Ω |vk| ≈ (4B/|σ|)k, where B = supp∈∂Ω d(p, σ)

(here d(p, σ) denotes the distance from p to σ). In the reconstruction of ∂u
∂n

we may thus

bound the error contribution ek in equation (21) as

|ek| ≤ ε|∂Ω|
(

4B

|σ|
)k

. (23)
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For the estimation of ∂u
∂n

we use Ek = |∂Ω|
(

4B
|σ|

)k

in equations (21) and (20).

The following Lemma will be used to show below that this regularization scheme

is “consistent”, in that as the noise level decreases to zero the reconstructed estimate f̃

converges to the actual value given by equation (19).

Lemma 5.1 For any square-summable sequence dk, k ≥ 1 and sequence pk > 0, k ≥ 1

we have limε→0+ Q(ε) = 0 where

Q(ε) = ε2

∞∑

k=1

d2
k

(pk + ε)2
.

This can be proved by splitting the sum for Q as

Q(ε) = ε2

N∑

k=1

d2
k

(pk + ε)2
+ ε2

∞∑

k=N+1

d2
k

(pk + ε)2

≤ ε2

mink≤N pk

N∑

k=1

d2
k + ε2

∞∑

k=N+1

d2
k

ε2

≤ ε2

mink≤N pk

∞∑

k=1

d2
k +

∞∑

k=N+1

d2
k. (24)

For any η > 0 we can choose N sufficiently large so that the second sum on the right in

inequality (24) is less than η/2. It then follows that for all sufficiently small ε we have

that the first sum on the right in (24) is also less than η/2, so that Q(ε) < η for all

sufficiently small ε, which proves the Lemma. ¤

To show that f̃ converges to f in L2(σ), let the errors ek be given as ek = rkε where

|rk| ≤ Ek with Ek denoting the upper bounds derived in (22) or (23). Since the ψk are

orthonormal we have

R(ε) ≡ ‖f̃ − f‖2
L2(σ) =

∞∑

k=1

(bkc̃k − ck)
2

= ε2

∞∑

k=1

(ĉkrk/Ek − ck)
2

(ĉk/Ek + ε)2

≤ 2ε2

∞∑

k=1

ĉ2
k

(ĉk/Ek + ε)2
+ 2ε2

∞∑

k=1

c2
k

(ĉk/Ek + ε)2
(25)

where we have used (ĉkrk/Ek− ck)
2 ≤ 2((ĉkrk/Ek)

2 + c2
k) and |rk|/Ek ≤ 1. Convergence

of R(ε) to zero follows by applying Lemma 5.1 to the two sums on the right in (25),

with pk = ĉk/Ek and dk = ĉk or dk = ck, respectively.

5.3. Examples: Reconstruction of Nonlinear F

In this section we illustrate the reconstruction algorithm with some nonlinear examples.

We begin with F (x) = 3 arctan(3x), both without and with added noise. The domain
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Ω and crack σ are as in the previous examples. We also make use of multiple input

fluxes in the following reconstructions. The reason is that although [u] and hence F ([u])

assume all values from 0 to some maximum value on σ, we typically ignore flux data

near the crack tips. As a result, for any given input flux [u] and F ([u]) take values in

a rather narrow range, insufficient to “illuminate” the full graph of F . By taking input

fluxes with magnitude over a wide range, we can better delineate the graph of F .

Figure 6 below shows two views of F for a noiseless reconstruction using input

fluxes g(t) = A sin(t) for A = 1, 3, 4.5, 6, and 8; the first figure zooms in to show only

the cases A = 1, 3, and 4.5. In each case the actual graph of F is shown as a dashed

line.

Reconstruction, F(x)=3arctan(3x)

0

0.5

1

1.5

2

2.5

3

3.5

F([u])

0.2 0.4 0.6 0.8 1
[u]

Reconstruction, F(x)=3arctan(3x)

0

1

2

3

4

F([u])

0.5 1 1.5 2 2.5 3 3.5
[u]

Figure 6: F ([u](s)) versus [u]s for F (x) = 3 arctan(3x).

The reconstruction was regularized as described above, with estimated noise level

ε = 10−4. Only data from the central 60 percent of the crack was used.

In the reconstructions of Figure 7 below the situation is as above, but with a small

amount of noise added to the measured Dirichlet data on ∂Ω (their were 100 measure-

ment points on ∂Ω). The noise was zero mean Gaussian with standard deviation equal

to 0.002, which is about one percent of the maximum value of u − u0 with input flux

g(t) = 3 sin(t) (where u0 is the harmonic solution with Neumann data g and u the

solution on the cracked domain). Given that the actual Dirichlet data for u has a max-

imum of about 9.5 for the g(t) = 8 sin(t) case, an error of the scale 0.002 is realistic

for impedance imaging applications. We use a value of ε = 0.004 in the regularization

scheme.
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Reconstruction, F(x)=3arctan(3x)

0

0.5

1

1.5

2

2.5

3

3.5

F([u])

0.2 0.4 0.6 0.8 1
[u]

Reconstruction, F(x)=3arctan(3x)

0

1

2

3

4

F([u])

0.5 1 1.5 2 2.5 3 3.5
[u]

Figure 7: F ([u](s)) versus [u](s) for F (x) = 3 arctan(3x).

Below we illustrate the recovery of a transmission condition governed by the poly-

nomial F (x) = 1
40

x5 − 1
4
x4 + 2

3
x3 + x on the same crack as above, with input fluxes

g(t) = A sin(t) for A = 1, 3, 5, 8, 10, 12. For the reconstruction on the left in Figure 8

zero mean Gaussian noise with standard deviation 0.002 was added to the data, while

for the reconstruction on the right the noise had standard deviation 0.01, five times

greater. In each case the value of ε in the regularization scheme is chosen as twice the

standard deviation of the noise.

Reconstruction, Polynomial F(x)

0

2

4

6

8

F([u])

1 2 3 4
[u]

Reconstruction, Polynomial F(x)

0

2

4

6

8

F([u])

1 2 3 4
[u]

Figure 8: F ([u](s)) versus [u](s) for F (x) = 1
40

x5 − 1
4
x4 + 2

3
x3 + x, noise levels 0.002

and 0.01.

Despite the fact that a noise level of 0.01 is relatively high for this application, the

recovered estimate on the right is still quite reasonable.

5.4. Extensions and Conclusions

It is well known that the input flux g can have a large effect on one’s ability to resolve

the crack and the solution near the crack, and some insights have been obtained on the
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nature of such optimal input fluxes; see [7] for examples. In our examples we simply

take care that σ is not close to parallel to ∇u0, the gradient of the harmonic function

with input flux g (a situation which leads to [u] ≈ 0 on σ, and an inability to resolve

the crack). An interesting question, which we have not thoroughly explored, is that

of quantifying the “optimal” flux for identifying a crack and the function F in the

constitutive relation ∂u
∂n

= F ([u]).

We also note that this method for reconstructing ∂u
∂n

has an obvious extension to

the case in which the transmission condition is given by ∂u
∂n

(s) = F (s, [u](s)) for s ∈ σ,

though in this case many input fluxes would be needed to reconstruct F at each point

on σ, and the problem becomes considerably more ill-posed, especially for s near the

endpoints. The extension to multiple cracks or the time-dependent (heat equation)

setting would also be of interest.

6. Appendix

In this appendix we show that there is a unique solution to (1)-(3), with sufficient

regularity for the extended reciprocity gap formula (4) to hold. We suppose that F is

continuous, non-decreasing, F (0) = 0, and F satisfies a polynomial growth bound

|F (x)| ≤ C|x|n

for some n > 0. Note also that since F is non-decreasing we have

(x− y)(F (x)− F (y)) ≥ 0 (26)

for all x, y.

Let H1
∗ (Ω\σ) denote the functions φ in H1(Ω\σ) with

∫
∂Ω

φ ds = 0, with the inner

product of H1. In what follows we make use of the Poincaré inequality

‖φ‖H1∗(Ω\σ) ≤ C‖∇φ‖L2(Ω),

C independent of φ.

Define the functional

Q(φ) =
1

2

∫

Ω\σ
|∇φ|2 dx−

∫

∂Ω

φg ds +

∫

σ

G([φ]) ds

over H1
∗ (Ω \ σ) where G(t) =

∫ t

0
F (s) ds. Note that Q is well-defined: the first term on

the right in the definition of Q is clearly well-defined. The second,
∫

∂Ω

φg ds

is well-defined for g ∈ L2(∂Ω) (more generally, for g ∈ H−1/2(∂Ω)), since the trace of φ

on ∂Ω is in H1/2(∂Ω), and hence L2(∂Ω). Finally, consider the third term,
∫

σ

G([φ]) ds.
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If F satisfies a polynomial bound |F (x)| ≤ C|x|n then G satisfies a bound |G| ≤ C|x|n+1.

The trace operators T : H1
∗ (Ω \ σ) → Lp(σ) taking a function φ to its trace on either

side of σ is well-defined (in fact, compact) for 1 ≤ p < ∞ (see [1], Theorem 6.3, part I);

we find that [φ] ∈ Lp(σ) for 1 ≤ p < ∞ and so also G([φ]) ∈ Lp(σ) for p < ∞, and so

the integral of G([φ]) over σ is convergent.

Any minimizer of Q in H1
∗ (Ω \ σ) satisfies the Euler-Lagrange equations given by

(1)-(3), and these equations define a weak solution to the boundary value problem. To

see this, let u∗ denote a local minimizer of Q(φ) and consider Q(u∗ + εφ) where φ is

smooth in Ω \ σ. We have

Q(u∗ + εφ) = Q(u∗) + ε

(∫

Ω\σ
∇u∗ · ∇φ dx−

∫

∂Ω

gφ dx

)

+

∫

σ

G([u∗ + εφ]) ds + o(ε) (27)

If G is continuous and |G| ≤ C|x|n+1 then the mapping

M(ψ) = G(ψ(x))

is well-defined and Frechet differentiable from Lp to Lp′ (with p′ = p/(p − 1) > 1) for

any p > n + 2, with derivative dM(u) : φ → F (u)φ (here F (u)φ means the simple

pointwise product, where we’ve used dG/dy = F (y)); see Theorem 2.6 in [3]. From this

we conclude that the mapping ψ → ∫
σ
G(ψ(x)) dx is Frechet differentiable from Lp to

R with derivative

φ →
∫

σ

F (u∗)φ dx

at ψ = u∗. As a result
∫

σ

G([u∗ + εφ]) ds =

∫

σ

G([u∗]) ds + ε

∫

σ

F (u∗)φ ds + o(ε)

From this, equation (27), and the fact that u∗ is a minimizer of Q we have∫

Ω\σ
∇u∗ · ∇φ dx−

∫

∂Ω

gφ ds +

∫

σ

F ([u∗])[φ] ds = 0 (28)

for all φ ∈ H1
∗ (Ω\σ). This is precisely the weak form of equations (1)-(3). We will show

that Q actually possesses a minimizer over H1
∗ (Ω \ σ), and hence there is a (unique)

solution to the weak form (28).

Claim: infφ∈H1∗(Ω\σ) Q(φ) > −∞.

To prove this first note that∣∣∣∣
∫

∂Ω

gφ ds

∣∣∣∣ ≤ ‖g‖L2(∂Ω)‖φ‖L2(∂Ω)

≤ C‖g‖L2(∂Ω)‖φ‖H1∗(Ω\σ)

≤ C‖g‖L2(∂Ω)‖∇φ‖L2(Ω\σ)

≤ C

ε
‖g‖2

L2(∂Ω) + Cε‖∇φ‖2
L2(Ω\σ) (29)
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for any ε > 0, where we’ve made use of the boundedness of the trace operator, Young’s

inequality, and the Poincaré inequality. Note also that since G(t) ≥ 0 for all t we have∫

σ

G([φ]) ds ≥ 0

From this last bound and the bound (29) we see that

Q(φ) >

(
1

2
− Cε

)
‖∇φ‖2

L2(Ω\σ) −
C

ε
‖g‖2

L2(∂Ω)

which, if we choose ε < 1/(2C), provides a lower bound for Q on H1
∗ (Ω \ σ) and proves

the Claim.

Since Q is bounded below we may choose a sequence un in H1
∗ (Ω \ σ) with

Q(un) → inf
φ∈H1∗(Ω\σ)

Q(φ).

Also (from the lower bound for Q) we have Q(un)+C‖g‖2
L2(∂Ω) > ‖∇un‖2

L2(Ω\σ) for some

constant C, so we see that ∇un is bounded in L2(Ω \ σ), and hence by the Poincaré

inequality we have that un is bounded in H1
∗ (Ω\σ). We may thus choose a subsequence

(again denoted by un) such that un converges weakly in H1
∗ (Ω \ σ).

We also have∫

Ω\σ

(
1

2
|∇un|2 +

1

2
|∇u∗|2 −∇un · ∇u∗

)
dx =

1

2

∫

Ω\σ
|∇un −∇u∗|2 dx ≥ 0.

(30)

Since un → u∗ weakly in H1
∗ (Ω \ σ) we have that ∇un → ∇u∗ weakly in L2(Ω \ σ) and

hence from (30)

lim inf
n

∫

Ω\σ

(
1

2
|∇un|2 − 1

2
|∇u∗|2

)
dx ≥ 0

so that

1

2

∫

Ω\σ
|∇u∗|2 dx ≤ 1

2
lim inf

n

∫

Ω\σ
|∇un|2 dx. (31)

Also, since un → u∗ weakly in H1
∗ (Ω \ σ) it follows that T (un) → T (u∗) weakly in

H1/2(∂Ω) (where T is the trace operator on ∂Ω), so that∫

∂Ω

ung ds →
∫

∂Ω

u∗g ds (32)

Finally, the weak convergence of un to u∗ in H1
∗ (Ω \ σ)) (and the fact that the

trace/jump mapping taking φ ∈ H1
∗ (Ω \ σ) to [φ] ∈ Lp(σ) is compact for p < ∞) yields

[un] → [u] in Lp(σ) for p < ∞. If |G(x)| ≤ C|x|n+1 then φ → G(φ) is continuous as an

operator from Ln+1(σ) to L1(σ) (see [3], Theorem 2.2), and so∫

σ

G([un]) ds →
∫

σ

G([u∗]) ds. (33)
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Combining (31), (32), (33), and using the fact that Q(un) converges to the infimum

of Q yields

Q(u∗) = inf
φ∈H1∗(Ω\σ)

Q(φ)

so u∗ is a minimizer.

To show that the minimizer is unique, note that if u1 and u2 in H1
∗ (Ω \ σ) have

the same Neumann data g then we obtain from equation (28) (by letting u = u1 and

u = u2, each with test functions φ = u1 and φ = u2, then taking an appropriate linear

combination of the resulting four equations) that

∫

Ω\σ
|∇u1 −∇u2|2 dx +

∫

σ

(u1 − u2)(F ([u1])− F ([u2])) ds = 0.

From equation (26) it follows that both terms above are positive, so that ∇(u1−u2) ≡ 0.

Since
∫

∂Ω
(u1 − u2) ds = 0 we conclude that u1 ≡ u2.

6.1. Regularity and the Reciprocity Gap Formula

We need fairly minimal regularity results. As noted above, since the solution u ∈
H1
∗ (Ω \ σ) it follows that the trace [u] = u+ − u− is in Lp(σ) for 1 ≤ p < ∞. It

follows that F ([u]) contained in Lp(σ) for 1 ≤ p < ∞. Thus the integrals
∫

σ
[u] ds

and
∫

σ
F ([u]) ds converge, or more generally, the integrals

∫
σ
[u]φ ds and

∫
σ
F ([u])φ ds

converge any function φ ∈ Lq(σ) with q > 1.

The solution u is bounded on Ω\σ by its maximum value on ∂Ω, which is finite if g

is sufficiently regular, e.g., C1(∂Ω), which we now assume. To see this, use test function

φ = max(u−m, 0)

in equation (28), where m = sup∂Ω u < ∞. The function φ ∈ H1
∗ (Ω \ σ), and in fact

φ ≡ 0 on ∂Ω. With this choice of φ we have from equation (28) that∫

D

|∇u|2 dx +

∫

σ

F ([u])[φ] ds = 0 (34)

where D is that subset of Ω on which u ≥ m. Now [u] ≥ 0 implies u+ ≥ u−, which

yields u+ − m ≥ u− − m, and so φ+ ≥ φ−, hence [φ] ≥ 0. Similarly [u] ≤ 0 implies

[φ] ≤ 0. Since xF (x) ≥ 0, we conclude that the integral over σ in equation (34) is

non-negative, and indeed, all integrals on the left must be zero. Thus the set D is of

measure zero (since ∇u cannot vanish on a set of positive measure), and we conclude

that u is bounded by m inside Ω \ σ.

The reciprocity gap formula is easily derived from equation (28), at least for the

class of test functions under consideration. Let φ be any of the test functions used in

Section 5 and note that these functions (with the possible addition of a constant, which

does not change equation (28)) are in H1
∗ (Ω \ σ) with 4φ = 0 in Ω \ σ. Moreover,

they are bounded in Ω \ σ, and have bounded first derivatives in any subset of Ω \ σ

which excludes a neighborhood of the crack tips. At each crack tip the test function



Reconstruction of cracks with unknown transmission condition from boundary data 19

first derivatives have a singularity of the form c/
√

r for some c, where r denotes distance

to the crack tip.

Rescale so that σ = [0, 1] on the x-axis, and let σε denote a curve which

approximates σ, specifically, let σε consist of two intervals [ε, 1 − ε]+ (the “+” side

of the crack) and [ε, 1− ε]− (the “-” side) both on the x-axis, and two small circles C1

and C2 of radius ε, one around each tip of the crack, at x = 0 and x = 1. On Ω \ σε the

functions u and φ are sufficiently regular that we have∫

Ω\σε

∇u · ∇φ dx =

∫

∂Ω

u
∂φ

∂n
ds +

∫

σε

u
∂φ

∂n
ds. (35)

The integral over σε on the right in equation (35) can be split into two integrals over

[ε, 1− ε] (one involving u+, the other u−) on the x axis and integrals over the two circles

C1 and C2. The integrals over [ε, 1 − ε] approach the corresponding integrals over σ

(since the function u ∂φ
∂n

is integrable on σ). As ε approaches zero the integrals

∫

Cj

u
∂φ

∂n
ds

approach zero since ∂φ
∂n

= O(1/
√

r), where r is distance from 0, while |Cj| = O(r), and

u itself is bounded on Ω \σ. The integral over Ω \σε approaches the integral over Ω \σ,

since ∇u and ∇φ are in L2(Ω \ σ). As a result we obtain∫

Ω\σ
∇u · ∇φ dx =

∫

∂Ω

u
∂φ

∂n
ds +

∫

σ

[u]
∂φ

∂n
ds (36)

The extended reciprocity gap formula (4) is obtained by subtracting equation (28)

from equation (36).
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