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Abstract

This paper develops a fast algorithm for locating one or more perfectly insulating,
pair-wise disjoint, linear cracks in a homogeneous two-dimensional electrical conductor,
using boundary measurements.
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1 Introduction

The ability to characterize the interior of an object without incurring harm on it is an
invaluable tool in industry. Thus, simplifying available techniques of non-destructive imaging
has practical industrial purposes. One such technique is impedance imaging, or steady-state
thermal imaging. Bryan and Vogelius offer uniqueness results in the identification of n cracks
inside of a two dimensional region in [1], which were improved by Alessandrini and Diaz
Valenzuela in [2]. In [3], Andrieux and Ben Abda employed the reciprocity gap formula to
identify a single, perfectly insulating crack, and recently Ogborne and Vellela generalized this
method for completely characterizing a single linear crack which is not completely insulating
in [4]. In this paper, we will offer an alternative method for characterizing the location and
length of a single, completely insulating, linear crack. The ideas from this method will then
be employed in an algorithm characterizing multiple, completely insulating cracks.

2 The Forward Problem

Let Ω be a bounded region in R2 with boundary ∂Ω. The steady state temperature at any
point (x, y) lying inside of Ω will be denoted by u(x, y). After appropriate scaling, we assume
that u(x, y) obeys the steady state heat equation

∂2u

∂x2
+

∂2u

∂y2
= 0 (1)

in Ω. We also assume that a steady state heat flux, g, is applied the external boundary, so
that on ∂Ω,

∂u

∂n
= g (2)

where n is a unit outward vector normal to ∂Ω.
Now suppose that n linear, completely insulating, pairwise disjoint cracks lie inside of

Ω. Let σi denote the ith crack, pi the midpoint of σi, |σi| the length of σi, and θi the angle
between the line containing σi and the x-axis, where −π

2
< θi ≤ π

2
. In general we will work

under the assumption that |σi| ¿ min{|x− pi|;x ∈ ∂Ω}. If we denote the collection of n

cracks by Σ =
n⋃

i=1

σi, we then assume that (1) holds for all (x, y) ∈ Ω / Σ. Since we have

assumed that heat flow across each crack σi is blocked completely, we have

∂u

∂nσi

= 0 (3)

for all i, where nσi
is the unit vector normal to σi equal to < − sin(θi), cos(θi) >. Note that

condition (3) is assumed to hold on both sides of σi.
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We also add the normalization
∫

∂Ω
u ds = 0. These conditions ensure a unique solution

to the conduction problem (1)-(3).
For all i we will denote one side of σi as the “+” side, the other as the “−” side, in such a

way that the vector nσi
points from the minus to the plus side. The superscript “+” will be

used to denote the limiting value of a quantity from the plus side of σi, while the superscript
“−” denotes the limiting value from the minus side of σi.

The solution u to the forward problem will be smooth away from the cracks, but in
general will have a jump discontinuity across each crack. We will denote the jump function
in u across a crack by [u] = u+ − u−. Standard elliptic regularity theory shows that [u] is
continuous (indeed, smooth) along any given crack and tapers to zero at the crack endpoints,
typically with square root singularities at the crack tips.

Given (1)-(3), the forward problem consists of knowing the location of all σi in Ω, and
from this, recovering the steady state solution, i.e. the temperature u(x, y) for (x, y) ∈ Ω.
However, in this paper, we are interested in examining the inverse problem. Given (1)-(3)
and measurements of u on ∂Ω we wish to find the midpoint, pi, length, Li = |σi|, and angle,
θi, of each crack.

3 Locating a Single Crack

3.1 Algorithm

Suppose for a moment that there are no cracks inside of Ω. Let Γ(x1, x2) = 1
4π

ln(x2
1 + x2

2)
denote the fundamental solution for the Laplacian in two dimensions. Then by Green’s Third
Identity, we have that

1

2
u(x) +

∫

∂Ω

u(y)
∂Γ

∂ny

(y − x)dsy −
∫

∂Ω

Γ(y − x)
∂u

∂ny

(y)dsy = 0. (4)

We will denote the left hand side of (4) as α(x) (so for a function harmonic in Ω we have
α ≡ 0). Note that we can compute α(x) for any x ∈ ∂Ω, as both ∂u

∂n
and u(y) where y ∈ ∂Ω

are known.
Now suppose there are n cracks inside of Ω. In this case α(x) is not identically zero, but

rather an application of the divergence theorem shows that

α(x) =
n∑

i=1

∫

σi

∂Γ

∂nσ,i

(x− y) [u](y)dsy. (5)

For the remainder of this section, we will assume n = 1 and neglect the subscript on σ. We
parameterize σ as

{(y1, y2) : y1 = p1 + t cos(θ), y2 = p2 + t sin(θ) | −L

2
≤ t ≤ L

2
},
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which allows us to find ∂Γ
∂nσ

(x− y) explicitly, as

∂Γ

∂ny

(x− y) =
1

2π

− sin(θ)(x1 − p1 − t cos(θ))

(x1 − p1 − t cos(θ))2 + (x2 − p2 − t sin(θ))2

+
1

2π

cos(θ)(x2 − p2 − t sin(θ))

(x1 − p1 − t cos(θ))2 + (x2 − p2 − t sin(θ))2

=
1

2π

(x− p,nσ)

(x− p,x− p)− 2t(x− p, σ̂) + t2
(6)

where σ̂ =< cos(θ), sin(θ) >. Since x ∈ ∂Ω, the quantity ∂Γ
∂ny

(x− y) is well-defined for

t ∈ (−L/2, L/2), and vanishes identically in t precisely when (x− p,nσ) = 0, which occurs
precisely when x− p is perpendicular to nσ. As a result we find that the computable
quantity α(x) = 0 if and only if (x− p,nσ) = 0, which also occurs precisely when x− p
is perpendicular to nσ. Therefore there exist at least two points, xa, xb ∈ ∂Ω such that
α(xa) = α(xb) = 0, and it follows directly that σ is contained in the line from xa to xb. We
can thus easily recover the line on which the crack lies. See Figure 3.1 below.

We now show how to approximate the midpoint p of the crack. Expanding equation (6)
into a series in t and employing the assumption that the length of the crack is much less the
minimum of the set of distances from p to some x ∈ ∂Ω allows us to make the simplifying
assumption

∂Γ

∂ny

≈ 1

2π

(x− p,nσ)

(x− p,x− p)

Therefore, (5) can be closely approximated by

α(x) ≈ 1

2π

(x− p,nσ)

(x− p,x− p)

∫

σ

[u](y) dsy = J
(x− p,nσ)

(x− p,x− p)
, (7)

where we write J = 1
2π

∫
σ
[u](y) dsy.

As shown in [5], J is “generically” non-zero. Note that

α(x)

J
≈ (x− p,nσ)

(x− p,x− p)
(8)

follows directly from (7) for any x ∈ ∂Ω. Now, when x− p is parallel to nσ, (x− p,nσ) =

|x− p|, in which case we have (x−p,nσ)
(x−p,x−p)

= 1
|x−p| . See Figure 3.1 below. Note that this

quantity is negated if x− p is antiparallel to nσ.
Let x1,x2 ∈ ∂Ω such that the line (x1,x2) is perpendicular to the line (xa,xb), and

suppose the vector x1−p is parallel to nσ, which means that the vector x2−p is antiparallel
to nσ. Then by (8) and the triangle inequality we have that

|x1 − x2| ≤ |x1 − p|+ |p− x2| =
J

α(x1)
+

−J

α(x2)
, (9)
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Figure 1: Diagram for locating a single, perfectly insulating crack.

where equality holds only when p ∈ (x1,x2). Thus p can be approximated by taking pairs
of points perpendicular to σ and selecting the specific pair, (x1,x2), for which the equality
in (9) holds. We thus recover p as

p = (x1,x2) ∩ (xa,xb).

Finally, we show how to recover the length of the crack, which is related to the jump
integral J = 1

2π

∫
σ
[u](y)dsy. As shown in [4] and [5], the quantity J is easy to compute, as

follows. First, let ψ(x, y) = − sin(θ)x + cos(θ)y, where θ is the angle of the crack with the
x-axis (which we have now determined). We then have

∫

σ

[u](y)dsy =

∫

∂Ω

(
u
∂ψ

∂n
− ψ

∂u

∂n

)
ds (10)

computable entirely from boundary data, and hence J is computable.
Finally, as shown in Section 5, we can approximate J ≈ π

4
5 u0

.nσL
2, which means

L =

√
J

π
4
5 u0(p) · nσ

. (11)

Note that5u0(p)·nσ is now known, and so L can be determined. Thus the entire crack—the
midpoint p, angle θ, and length L are determined.

3.2 Reconstruction Example

To provide a specific example of the algorithm used to locate a single, perfectly insulating
crack, (and later examples of the numerical approximation of the location of multiple, per-
fectly insulating cracks), we take our domain Ω to be the unit disk in R2, and the flux on
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Figure 2: Graph of α(t) vs. t for boundary data generated by a single, linear, perfectly
insulating crack inside of Ω.

∂Ω to be g = sin(t), where Ω is parameterized as (cos(t), sin(t)) for 0 ≤ t < 2π, and we can
write u(x) = u(t) where x = (cos(t), sin(t)). With this region and flux, we have that the
harmonic solution over Ω is u0(x, y) = y, ∇u0 =< 0, 1 >,

∫
∂Ω

∂Γ
∂n

(x− y)u(y)dsy = 0, and
that

∫
σ
Γ(x− y) ∂u

∂n
(y)dsy = 1

2
sin(t) for the point x = (cos(t), sin(t)). Therefore

α(x) =
1

2
(u(t)− sin(t)) (12)

for x ∈ ∂Ω and 0 ≤ t < 2π.
In the example of locating both single and (later) multiple cracks, the boundary data,

u(x), for x ∈ ∂Ω was generated by a C program using a boundary integral approach for
solving the boundary value problem. In each example, data was generated for m equally
spaced points about ∂Ω. In each of the diagrams of the reconstructed cracks, the thick line
segment represents the location of the actual crack, while the thin line segment represents
the location of the estimated crack.

Using the method outlined in section 4, a single crack in Ω will be located. Therefore,
we write all points x ∈ ∂Ω for which we have temperature data as (cos(t), sin(t)), and
determine α(t) for each of these points. Given data for m equally spaced points on the
boundary, let u(i) denote the temperature at the ith point on ∂Ω, where 0 < i ≤ m. By
(12), α(x) = 1

2
u(cos(t), sin(t)) − 1

2
sin(t). Shown in Figure 3.2 is a graph of α(t) vs. t for

some single, perfectly insulating crack inside of Ω.
We see that α(t1) = α(t2) = 0 where t1 ≈ 1.0834353 and t2 ≈ 3.0582283. Therefore, σ
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lies on the line from

xa = (cos(1.0834353), sin(1.0834353)) = (0.4682958, 0.8835718)

to

xb = (cos(3.0582283), sin(3.0582283)) = (−0.9965272, 0.0832678).

We have thus identified the line on which σ lies. If desired, we can find θ by taking the
arctan of the slope of the line from xa to xb, and we find that θ = 0.5000355 radians.

We can now use equation (10) to determine

∫

σ

[u](y)dsy ≈
m∑

k=1

u(i) sin

(
2π(k − 1)

m
− θ

)

−
∫ 2π

0

sin(φ)(− sin(θ) cos(φ) + cos(θ) sin(φ))dφ

= 0.027569154

and so J =
R

σ [u](y)dsy

2π
≈ 0.0043878.

We then take pairs of points on ∂Ω which define a line perpendicular to the line (xa,xb).
Using these pairs of points, we create a test function defined by

T (x1,x2) =

(
J

α(x1)
− J

α(x2)

)
− |x1 − x2|

where the negative sign preceding J
α(x2)

accounts for the negative value of α(x2) resulting
from the fact that x2−p is antiparallel to nσ. The pair of points, x1 and x2 resulting in a zero
(and in fact, a minimum) of the test function define a line through the midpoint of σ. We find
x1 ≈ (−0.7106844, 0.7040318) and x2 ≈ (0.2087861,−0.9779614). As p = (x1,x2) ∩ (xa,xb)
we find

p ≈ (−0.5148069, 0.3464550).

We have determined the midpoint and angle of the crack.
Finally, we know ∇u0(p) · nσ =< 0, 1 > · < − sin(θ), cos(θ) >= cos(θ). From equation

(11) we find

L ≈
√

8J

cos(θ)
≈ 0.1999967.

The true values used to general the boundary data were θ = 0.5, L = 0.2 and p =
(−0.512, 0.348). The reconstruction is diagramed in Figure 3.2, along with the lines (x1,x2)
and (xa,x2), and the actual crack, σa, whose parameters are pa = (−0.512, 0.348), θa = 0.50
radians and La = 0.20 units. Note that the two cracks essentially coincide.
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Figure 3: Reconstruction of a single crack via algorithm outlined in section 3.

3.3 Optimal Input Heat Influx

It is well-known that the input heat flux can have a dramatic effect on one’s ability to
detect and image a crack. In particular, if ∇u0 is almost parallel to the crack then the
crack is doing little to impede the flow of heat. Therefore, we would expect the perturbation
of the boundary data caused by the crack, which is embodied in α(x), to be small and
uninformative. This corresponds to the case in which the jump integral J ≈ 0.

Throughout this section will we let n be the unit vector normal to the crack, and m be
the unit vector normal to the boundary ∂Ω, with p the midpoint of the linear crack. Thus
in order to obtain the most information, we wish ∇u0(p) · n to be as large as possible. The
direction and magnitude of ∇u0(p) depends only on the Neumann data that we input, g.
Thus we wish to maximize ∇u0(p) · n over all physically reasonable choices of g.

Let us first restrict ourselves to g ∈ L2(∂Ω). For a solution to

4u0 = 0 in Ω (13)

∂u0

∂n
= g on ∂Ω (14)

to exist, we must have
∫

∂Ω
g = 0. Our goal is to find that choice for g which maximizes

∇u0(p) · n. However it is clear that given a g, we can increase the magnitude of ∇u0(p),
and hence of the dot product, by simply multiplying g by any constant greater than 1. To
exclude optimizing over this possibility we will impose the condition

∫
∂Ω

g2 ≤ M for some
M > 0.

For any point (x1, x2) ∈ Ω, we can obtain the solution to (13)-(14) by

u0(x1, x2) =

∫

∂Ω

N(x1, x2, y1, y2)g(y1, y2) dsy (15)
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where N is the Neumann Kernel, which depends on the region Ω. Specifically, for any region
Ω ⊂ R2, the Neumann Kernel, N , for Ω is defined by

N(x,y) = Γ(x− y) + N0(x,y) (16)

for x = (x1, x2), y = (y1, y2), where N0 is a function satisfying

∆yN0 = 0 in Ω (17)

∂N0

∂my

= −
(

∂Γ

∂my

+
1

|∂Ω|
)

on ∂Ω (18)

for each x. We also add the normalization
∫

∂Ω
N(x,y) dsy = 0.

From equation (15) we that at any point p ∈ Ω we thus have

∇u0(p) · n =

∫

∂Ω

(∇xN(x1, x2, y1, y2) · n) g(y1, y2) dsy

=

∫

∂Ω

∂N

∂nx

(x1, x2, y1, y2) g(y1, y2) dsy

where ∂N
∂nx

= ∇xN · n. Parameterize the boundary by y1 = a(t), y2 = b(t), t = 0 . . τ , and
consider the gradient measured at the point (x1, x2) = (p1, p2), the midpoint of the crack, so
that

∇u0(p1, p2) · n =

∫ τ

0

∂N

∂nx

(p1, p2, a(t), b(t)) g(a(t), b(t)) dt

=

∫ τ

0

f(t)g(t) dt

where f(t) = ∂N
∂nx

(p1, p2, a(t), b(t)) and g(t) = g(a(t), b(t)). Then our optimization problem
may be stated as follows.

max
G∈L2(∂Ω)

∫ τ

0

f(t)g(t) dt (19)

subject to
∫ τ

0

g(t)s′(t) dt = 0 (20)

∫ τ

0

|g(t)|2s′(t) dt = 1 (21)

where s′(t) =
√

(a′(t))2 + (b′(t))2. Here we take M = 1 and f(t) to be known.
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We proceed by methods of Calculus of Variations. We transform (19), (20), and (21)
into a single maximization problem by considering the functional

∫ τ

0
f(t)g(t) + λ1s

′(t)g(t) +
λ2s

′(t)g(t)2 dt. Let F (t, g, g′) = f(t)g(t) + λ1s
′(t)g(t) + λ2s

′(t)g(t)2, so that the Euler-
Lagrange Equation, ∂F

∂g
− d

dt
∂F
∂g′ = 0, becomes simply f(t) + λ1s

′(t) + 2λ2s
′(t)g(t) = 0, so

that

g(t) = −1

2

f(t) + λ1s
′(t)

λ2s′(t)
(22)

Imposing (20) and (21) we obtain

λ1 = − 1

|∂Ω|
∫ τ

0

f(t) dt (23)

λ2 = ±1

2

√∫ τ

0

(f(t) + λ1s′(t))2

s′(t)
dt (24)

Where we choose the sign of λ2 so that the integral is maximized (this method provides
stationary points, which may be maxima, minima, or simply saddle points).

As a simple example, suppose Ω is the unit disk parameterized in the usual way, x1(t) =
cos(t), x2(t) = sin(t), with τ = 2π and hence s′(t) ≡ 1. Also with Ω as the unit disk with
y ∈ ∂Ω we have N(p,y) = 2Γ(p,y) and ∇xN(p,y) = 2∇xΓ(p,y). Also, suppose that a
single crack, σ lies inside of Ω such that p = (0, 0), θ = 0, and n =< 0, 1 >. Then

f(t) = 2∇xΓ(p1 − cos(t), p2 − sin(t)) · n
= 2

∂Γ

∂x2

(− cos(t),− sin(t))

=
1

π
sin(t)

Therefore, we have from equations (23) and (24) that λ1 = 0, λ2 = 1
2
√

π
, and from (22)

g = ± 1√
π

sin(t). This is for a single crack σ, with p = (0, 0) and θ = 0. The plus sign

on g maximizes the gradient at p, the minus sign minimizes (though both have the same
magnitude). Of course this makes perfect sense—the optimal flux induces an interior flux
which is straight down, orthogonal to the crack itself.

We can see that when the Neumann Kernel is known, the optimal heat flux is easy to
compute. But in many regions actually finding the Neumann Kernel is not practical. We
therefore would like to find a way to find g without explicitly computing the Neumann Kernel
everywhere in Ω.

We need to compute f(t) = ∂N
∂nx

(p,y(t)) for a fixed p ∈ Ω and all y(t) ∈ ∂Ω. We return
to (17) and (18). First recall that N(p,y) = Γ(p,y) + N0(p,y), and so

∂N

∂nx

(p,y) =
∂Γ

∂nx

(p,y) +
∂N0

∂nx

(p,y).
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Now ∂Γ
∂nx

(p,y) is simple to compute, since Γ is given in closed form. To find ∂N0

∂nx
(p,y) we

simply note that ∂N0

∂nx
(p,y) must satisfy

4y

(
∂N0

∂nx

)
= 0 in Ω (25)

∂

∂my

(
∂N0

∂nx

)
= − ∂2Γ

∂nx∂my

on ∂Ω (26)

where switching the order of the differential operators is valid since y runs along the boundary
and p is in the interior, so Γ and N0 are C∞ (recall that all functions are evaluated at
x = p). Equations (25)-(26) can be easily solved numerically, and to obtain g we simply add
the solution to ∂Γ

∂nx
(p,y), which is easily computable. Thus we have that for any arbitrary

region Ω, the optimal heat flux g exists and can be computed by numerically solving a
straightforward boundary value problem.

4 Generalization to Multiple Cracks

4.1 The Algorithm

The locations of any n number of cracks were approximated in [4] by Bryan and Vogelius
using a Newton-like method. This algorithm relied on solving a boundary value problem at
each iteration, creating cumbersome computations. We instead base our reconstructions on
equation (5), or rather, a close approximation. Specifically, as we did in deriving equation
(7), we may approximate the contribution of each crack on the right in (5) and obtain the
approximation

α(x) ≈
n∑

i=1

Ji
(x− pi,nσi

)

(x− pi,x− pi)
. (27)

This assumes that the cracks are not too close to the boundary, and “well-separated.”
We will write α(x, {pi, θi, Ji | i ≤ n}) to denote the dependence of α on these parameters

and use α∗(x) to denote the “true” value of α derived from measured data for a set of “true”
cracks. We will define

F (x) = α(x, {pi, θi, Ji | i ≤ n})− α∗(x) (28)

for x ∈ ∂Ω.
For the multiple crack problem we have not found any simple analytical method for

locating the cracks. Instead we employ a least-squares approach using the function F .
Specifically, we make an initial guess at the parameters of all n cracks (n itself may also be a
guess). We “collect” measured data to compute α∗(x) and then α(x) is computed using the

12



initial guess at the parameters of the n cracks. After the initial guess is made, the Levenberg-

Marquardt Method is used to adjust the parameters until
m∑

j=1

F (xj)
2 is minimized, where xj

denotes the jth point of a list of m data points on the boundary ∂Ω
Ideally F (xj) should be zero for each xj ∈ ∂Ω when the correct pi, θi, and Ji value have

been obtained for each σi. However, due to the various assumptions made this is typically
note the case. After the optimization algorithm terminates we will have an approximation
to each crack midpoint pi, angle θi, and jump integral Ji. Finally, using the approximation
(11) we can approximate each Li. In order to obtain the best approximation of the location
of the cracks, the initial guess should have the n cracks well separated.

Note that this approach does NOT involve solving any boundary value problems.

4.2 Numerical Examples

Provided in this section are a variety of numerical examples of estimating the location of two
or more perfectly insulating, pair-wise disjoint cracks. Aside from the number of cracks, the
situation is identical to that of the single crack example, e.g., input flux g(t) = sin(t). The
examples in this section demonstrates the relative importance of knowledge of the number
of cracks contained inside of Ω before estimating the locations of the cracks, an issue which
has been examined from a statistical point of view in [1].

In the first example, two actual cracks were used to generate the data and α∗ was com-
puted. To solve the inverse problem, initial parameters were entered into a Levenberg-
Marquardt C program specifically designed for locating two cracks, with no prior knowledge
of the locations of the two actual cracks used to generate u and α∗ for x ∈ ∂Ω. The lo-
cations of the cracks were recovered after 23 iterations, which yielded a minimum F 2 value
of 0.000108. Then, using the recovered parameters for the two cracks, the program was
run again, and the same parameters were obtained again after 7 iterations, again with a
minimum F 2 value of 0.000108. As shown in Figure 4, the reconstructed cracks essentially
coincide with the actual cracks.

In the second example we use the same two “real” cracks to general α∗, then attempt
to solve the inverse problem under the assumption that three cracks are present. Initial
parameters were entered into a C program specifically designed for locating three cracks
with no prior knowledge of the locations of the two cracks used to generate the boundary
data. The locations of the ’three’ cracks were recovered after 1000 iterations, when the
program was designed to terminate. Although this seems like a tremendous amount of
computations, the program was complete within two minutes. The minimum F 2 value
obtained was 0.000017, which indicates that a very good approximation of the locations
of the cracks should have been obtained. However, as shown in Figure 5, a single crack
is approximated by the intersection of two cracks, whose endpoints lie very close to the
endpoints of the actual crack.
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Figure 4: Reconstruction of two perfectly insulating, pair-wise disjoint cracks.

Figure 5: Reconstruction of two perfectly insulating, pair-wise disjoint cracks, using a pro-
gram specific to locating exactly three cracks and arbitrary initial parameters.

14



Figure 6: Reconstruction of two perfectly insulating, pair-wise disjoint cracks, using a pro-
gram specific to locating three cracks

In the third example we again attempt to fit three cracks to data general by only two
cracks. The first two sets of initial parameters used were close to the actual parameters of
the two cracks used to generate the boundary data. The last set of parameters used were
relatively far away from the first set. After only 11 iterations, the minimum F 2 value of
0.000108 was obtained, the first two cracks essentially coincided with the actual cracks and
the third crack was shrunk to a length of ≈ .00495 and its midpoint was far outside of the
region, at ≈ (−3.24, 0.074). This third crack is omitted from the reconstruction diagram,
shown in Figure 6.

We now provide some examples in which three actual cracks are used to generate the
forward data. In this next example, initial parameters for three guessed cracks were entered
into a C program specifically designed for estimating three cracks with no prior knowledge
of the locations of the cracks used to generate u(x) for x ∈ ∂Ω. The locations of the cracks
were recovered after 99 iterations. Then, using the recovered parameters for the three cracks,
the program was run again, and parameters identical to the previous values were obtained
after 38 iterations. As shown in Figure 7, the reconstructed cracks act as a fair estimation
of the actual cracks. However, in this example, the minimum F 2 value obtained is 0.00488,
indicating that the final approximation is not as good as the approximation locating two
cracks in the first example of the previous section. However, as can be seen in Figure 7, the
assumption that the length of each crack is much less than the distance from the midpoint
of the crack to any point on the boundary is violated. Taking this fact into account, this
method of approximating the location of perfectly insulating cracks seems reasonably good.

We would like to note at this point that each C program approximating the locations of
two and three cracks was completed nearly instantly, except for the second example, which
was able to complete 1000 iterations in less than two minutes. However in the specific
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Figure 7: Reconstruction of three perfectly insulating, pairwise disjoint cracks

programs used to obtain the approximations of the locations, the precision was far too
stringent, as the program failed to terminate immediately when recovered parameters had
been entered as an initial guess. Relaxing the precision slightly would reduce the number of
iterations the program would have to traverse before finding an appropriate approximation.

5 Relating Crack Length and Jump Integral

The goal of this section is prove the relation
∫

σ

[u] ds =
π

4
(∇u0(p) · n)|σ|2 + O(|σ3|) (29)

from which we derived equation (11) used in the reconstruction process.

5.1 Reduction to an Integral Equation

In what follows we will use u0 to denote the harmonic function on the “uncracked” domain
Ω with Neumann data g, while u denotes the solution to (1)-(3). A central portion of our
reconstruction algorithm for estimating crack length concerns the relationship between the
jump integral

∫
σ
[u] ds over a typical crack σ, the length of σ, and u0. We now prove the

relation (11).
For the moment we assume that Ω contains a single linear insulating crack σ. Via

translation and rotation, we may suppose that Ω contains a neighborhood of the origin, and
that the crack σ lies inside of Ω on the interval (0, ε) on the x-axis, for some ε > 0. Let the
unit normal vector to σ be given by nσ =< 0, 1 >.

We will let Γ denote the Green’s Function for the Laplacian operator in R2, given by
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Γ(x1, x2) = − 1

4π
log(x2

1 + x2
2) (30)

Lemma 1 Let v(x, y) =
∫ ε

0
∂Γ
∂y

(x− s, y)φ(s)ds for some φ ∈ C2(0, ε)∩C0([0, ε]) with φ(0) =

φ(ε) = 0. Then v(x, y) is harmonic away from σ, ∂v
∂y

is continuous over σ, and [v](x, y) =

φ(x, y) for all (x, y) ∈ σ.

Proof . First note that if (x, y) is not near σ, the integrand is perfectly smooth. Because the
integral is over a finite region, the operator ∂2

∂x2 + ∂2

∂y2 can be interchanged with the integral.
Then we have that

(
∂2

∂x2
+

∂2

∂y2

)
∂Γ

∂y
(x− s, y) = − y(2x− 2s)2

π((x− s)2 + y2)3
+

y

π((x− s)2 + y2)2

+
3y

π((x− s)2 + y2)2
− 4y3

((x− s)2 + y2)3

= 0

for x− s 6= y. Thus we have that v is harmonic at any (x, y) away from σ.
Written out explicitly we have

v(x, y) =

∫ ε

0

− 1

2π

y

(x− s)2 + y2
φ(s) ds (31)

so the integrand is perfectly smooth for all (x, y) away from σ. Also, as the integrand is over
a finite interval, we can differentiate under the integral to obtain

∂v

∂y
(x, y) = − 1

2π

∫ ε

0

(x− s)2 − y2

((x− s)2 + y2)2
φ(s)ds. (32)

From this, it is evident that if the limit as y → 0− exists, then limy→0−
∂v
∂y

= limy→0+
∂v
∂y

, as
y only appears in squared form.

We will show that limy→0
∂v
∂y

exists. Employing integration by parts yields

∫ ε

0

(x− s)2 − y2

((x− s)2 + y2)2
φ(s)ds =

∫ ε

0

x− s

((x− s)2 + y2)
φ′(s)ds (33)

as we have φ(s) ∈ L2(0, ε) and φ(0) = φ(1) = 0 by assumption. Now, for any η > 0, we have

lim
y→0

∫ x−η

0

x− s

(x− s)2 + y2
φ′(s)ds =

∫ x−η

0

φ′(s)
x− s

ds

lim
y→0

∫ ε

x+η

x− s

(x− s)2 + y2
φ′(s)ds =

∫ ε

x+η

φ′(s)
x− s

17



as the integrands on the left converge uniformly to those on the right over the ranges of
integration. Again by integration by parts, we also have that

∫ x+η

x−η

x− s

(x− s)2 + y2
φ′(s)ds =

1

2

∫ x+η

x−η

φ′′(s) log((x− s)2 + y2)ds. (34)

By assumption, |φ′′(s)| ≤ M for s ∈ (x−η, x+η), and if we let ψ(x, y, η) denote the quantity
in the right hand side of (34), we have

|ψ(x, y, η)| ≤ M

2

∫ x+η

x−η

| log((x− s)2 + y2)|ds

= M |η log(y2 + η2)− 2η + 2y arctan(
η

y
)|

≤ M |η log(y2 + η2 − 2) + π|y||,
as ‖ arctan ‖∞ ≤ π

2
. Therefore, we have that

∫ ε

0

x− s

(x− s)2 + y2
φ′(s)ds =

∫ x−η

0

x− s

(x− s)2 + y2
φ′(s)ds

+

∫ x+η

x−η

x− s

(x− s)2 + y2
φ′(s)ds

+

∫ ε

x+η

x− s

(x− s)2 + y2
φ′(s)ds

and taking the limit as y → 0 yields

lim
y→0

∫ ε

0

x− s

(x− s)2 + y2
φ′(s)ds =

∫ x−η

0

φ′(s)
x− s

ds +

∫ ε

x+η

φ′(s)
x− s

ds + E(η)

where |E(η)| ≤ 2ηM(log(η) + 1). Verification that limη→0 E(η) = 0 is left to the reader,
leaving us with

∂v

∂y
|σ =

1

2π
lim
y→0

∫ ε

0

x− s

(x− s)2 + y2
φ′(s)ds =

1

2π
p.v.

∫ ε

0

φ′(s)
x− s

ds. (35)

It is a rather standard exercise to verify that the principal integral on the right above exists
for x ∈ (0, ε), since φ is C2 (and hence φ′ is C1) on the interval (0, ε). Therefore, by (32)
and (33), we have that ∂v

∂y
is continuous over σ.

Finally, we examine [u] across σ. For any fixed δ > 0, as y → 0, y
(x−s)2+y2 φ(s) converges

uniformly to zero for s ∈ (0, x− δ) and for s ∈ (x + δ, ε), which shows that

lim
y→0+

− 1

2π

∫ x−δ

0

y

(x− s)2 + y2
φ(s)ds
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= lim
y→0+

− 1

2π

∫ ε

x+δ

y

(x− s)2 + y2
φ(s)ds

= 0

for any δ > 0. It follows directly that

v+(x, y) = − 1

2π
lim

y→0+

∫ x+δ

x−δ

y

(x− s)2 + y2
φ(s)ds (36)

for any fixed δ > 0.
Because φ is continuous by assumption, for any η > 0, there exists δ > 0 such that

|φ(x)− φ(s)| < η if |x− s| < δ. Therefore, we have

∣∣∣∣
∫ x+δ

x−δ

y

(x− s)2 + y2
φ(s)ds− φ(x)

∫ x+δ

x−δ

y

(x− s)2 + y2
ds

∣∣∣∣

≤ η

∫ x+δ

x−δ

y

(x− s)2 + y2
ds (37)

= η2 arctan(
δ

y
)

≤ ηπ.

Multiplication of (37) by − 1
2π

yields

∣∣∣∣
1

2
φ(x)− 1

2π

∫ x+δ

x−δ

y

(x− s)2 + y2
φ(s)ds

∣∣∣∣ ≤
η

2

for any y. Then, taking the limit as y → 0 shows,

lim
y→0+

1

2π

∫ x+δ

x−δ

y

(x− s)2 + y2
φ(s)ds =

1

2
φ(x)

which, along with (10), gives us that v+(x, y) = 1
2
φ(x). A similar argument shows that

v−(x, y) = −1
2
φ(x), so it follows directly that

[v](x, 0) = φ(x), for (x, 0) ∈ σ (38)

thereby completing the proof. ¤

We will use the preceding Lemma to construct an approximate solution ũ ≈ u to equations
(1)-(3), by choosing φ(s) so that ∂v

∂nσ
= − ∂u0

∂nσ
on σ. It then follows that the function ũ = u0+v
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satisfies ∂v
∂n

= 0 on σ, and moreover, we will show that
∫

σ
[ũ] =

∫
σ
[u] + O(ε3). Since we can

compute
∫

σ
[ũ] = π

4
ε2(∇u0 · n) directly, the approximation

∫
σ
[u] ≈ π

4
ε2(∇u0 · n) + O(ε3) will

follow.
From Lemma 1, choosing a function α defined on [0, ε] so that v(x, y) =

∫ ε

0
∂Γ
∂y

(x −
s, y)α(s)ds satisfies ∂v

∂nσ
= − ∂u0

∂nσ
requires that we solve

p.v.

∫ ε

0

α′(s)
x− s

ds = −2π
∂u0

∂y
(x) (39)

for 0 < x < ε, where we assume the crack is the interval (0, ε) on the x axis. In fact, in
what follows we will write σε when we need to emphasize the crack’s dependence on ε. The
function u0 is smooth near σε, and we can write

∂u0

∂y
(x, 0) =

∂u0

∂y
(p, 0) +

∂2u0

∂x∂y
(q(x), 0)(x− p)

=
∂u0

∂y
(p, 0) + εR(x)

where p = ε/2 is the midpoint of σε, q(x) denotes some number between p and x, and

R(x) = (x−p
ε

) ∂2u0

∂x∂y
(q(x), 0). Note that R, as well as its derivatives of any order, can be

bounded in terms of ‖g‖L2(∂Ω).
The solution α to equation (40) is given as α(s) = −2π ∂u0

∂y
(p, 0)φ(s) where φ satisfies

p.v.

∫ ε

0

φ′(s)
x− s

ds = 1 + εr(x) (40)

with r(x) = R/(∂u0(p)/∂y), provided that p is not a critical point for u0.

5.2 Solvability of the Integral Equation

We wish to solve (40) for φ, and we wish φ ∈ L2(0, 1). First we must justify that (40) has a
unique L2(0, 1) solution. To do so we will establish three preliminary facts.

Fact 1 If {φn}∞0 ⊂ L2(0, π) is orthonormal and complete, {µn}∞0 ⊂ R and k(x, t) =
∞∑

n=0

µnφn(x)φn(t), then {φn} is a complete set of eigenvectors and {µn} is the corresponding

set of eigenvalues for the L2[0, π] operator K defined by (Kφ)(x) =
∫ π

0
k(x, t)φ(t) dt.

Proof For all φ ∈ L2(0, π),
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(Kφ)(x) =

∫ π

0

k(x, t)φ(t) dt

=

∫ π

0

[ ∞∑
n=0

µnφn(x)φn(t)

]
φ(t) dt

=
∞∑

n=0

µnφn(x)

∫ π

0

φ(t)φn(t) dt

=
∞∑

n=0

µnφn(x)(φ, φn)

So

Kφ =
∞∑

n=0

µnφn(φ, φn)

Now for m = 0, 1, . . ., φm is in L2(0, π), and (φm, φn) =

{
0 if m 6= n
1 if m = n

, since {φn}∞0 is

orthonormal. Thus

Kφm =
∞∑

n=0

µnφn(φm, φn) = µmφm

So Kφm = µmφm, and thus {φn}∞0 are a complete set of eigenvectors of K, and {µm}∞0 are
the corresponding eigenvalues. ¤

Fact 2 Let {φn}∞0 ⊂ L2(0, π) be complete and orthonormal, {µn}∞0 ⊂ R\{0} be the eigen-
vectors and eigenvalues of a compact and self-adjoint operator K on L2(0, π). Then for

g ∈ L2(0, π), Kφ = g has a unique L2(0, π) solution if
∞∑

n=0

| 1
µn

(g, φn)|2 < ∞, in which case

the solution is given by φ =
∞∑

n=0

1
µn

(g, φn)φn.

Proof For all x ∈ R, let φ(x) =
∞∑

n=0

1
µn

(g, φn)φn(x). Now

∫ π

0

|φ(x)|2 dx =

∫ π

0

|
∞∑

n=0

1

µn

(g, φn)φn(x)|2 dx

≤
∫ π

0

( ∞∑
n=0

| 1

µn

(g, φn)φn(x)|
)2

dx
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≤
∫ π

0

∞∑
n=0

| 1

µn

(g, φn)φn(x)|2 dx

=
∞∑

n=0

∫ π

0

| 1

µn

(g, φn)φn(x)|2 dx

=
∞∑

n=0

| 1

µn

(g, φn)|2
∫ π

0

|φn(x)|2 dx

=
∞∑

n=0

| 1

µn

(g, φn)|2

< ∞
Thus

∫ π

0
|φ(x)|2 dx < ∞, so φ ∈ L2(0, π). Now,

Kφ = K

( ∞∑
n=0

1

µn

(g, φn)φn

)

=
∞∑

n=0

1

µn

(g, φn)Kφn

=
∞∑

n=0

µn

µn

(g, φn)φn

=
∞∑

n=0

(g, φn)φn

But since {φn} is complete, g =
∞∑

n=0

(g, φn)φn, so Kφ = g. Thus φ solves Kφ = g. ¤

Fact 3 Let K be an operator from L2(0, π) to L2(0, π) defined by

(Kψ̂)(σ) =

∫ π

0

log | cos(σ)− cos(θ)|ψ̂(θ) dθ (41)

For (0 < σ < π). Then the eigenvalues of K are µ0 = −π log(2), µn = −π
n

for n ≥ 1, and

the eigenfunctions are φ0 = 1√
π
, φn(σ) =

√
2
π

cos(nσ), n ≥ 1, which are orthonormal and

complete in L2(0, π).

Proof One can verify that the kernel of this integral operator can be written

log | cos(σ)− cos(θ)| = − log 2−
∞∑
i=1

2cos(nσ) cos(nθ)

n

(0 ≤ θ, σ ≤ pi, θ 6= σ)
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(see Porter and Stirling, Appendix C, and example 6.10). This is of the form
∞∑

n=0

µnφn(σ)φn(θ)

with µ0 = −πlog(2), µn = −π
n
, and φ0 = 1√

π
, φn(σ) =

√
2
π

cos(nσ). It is easy to verify that

{φn} is orthonormal and complete in L2(0, π). We then employ Fact 1 to conclude that {φn}
are the eigenvectors of K, and {µn} are the eigenvalues. ¤

The following Theorem shows that equation (40) has a unique solution.

Lemma 2 Let f ∈ C3[0, 1] and δ > 0 a real constant. Then the integral equation

p.v.

∫ 1

0

φ′(t)
t− s

dt = 1 + δf(s), 0 < s < 1, (42)

has a unique solution φ of the form

φ(t) = − 1

π

√
t− t2 + δψ1(t)

which is continuous on [0, 1], twice continuously-differentiable on (0, 1), with φ′ integrable on
(0, 1) and φ(0) = φ(1) = 0. Also, ‖ψ1‖∞ is bounded by ‖f‖C3[0,1].

Note that for such a function the principle value integral will exist for each s ∈ (0, 1)
since φ′ is continuously differentiable.

To prove the Lemma we cast equation (42) into an alternate form. Consider a function
φ(t) with the above stated regularity which satisfies equation (42). We proceed as in section
9.5.2 of [7]: Integrate both sides of equation (42) in s from s = 0 to s = x to obtain

−
∫ 1

0

ln(2|x− t|)φ′(t) dt = x + δ

∫ x

0

f(s) ds− C1 (43)

for a constant C1 =
∫ 1

0
ln(2s)φ′(s) ds, where the legitimacy of the integration and swapping

of order is justified by equation (9.12) and Lemma 9.1 in [7], and the constant C1 may
be considered arbitrary. Any solution to equation (42) with the stated regularity satisfies
equation (43). Conversely, as shown in that text (again, section 9.5.2) any solution to (43)
also satisfies (42).

Now integrate by parts on the left in equation (43) to transfer the derivative off of φ,
taking care to interpret the resulting principal value terms correctly (briefly, split the integral
into pieces over intervals (0, x− ε) and (x + ε, 1), integrate by parts on each, then take the
limit as ε → 0) and use φ(0) = φ(1) = 0 to obtain

p.v.

∫ 1

0

φ(t)

t− x
dt = x + δF (x)− C1 (44)
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where F (x) =
∫ x

0
f(s) ds. One can also easily verify that any solution to equation (44)

necessarily satisfies equation (43), provided φ has the required regularity.
Again following section 9.5.2 in [7], integrate both sides of equation (44) in x from x = 0

to x = y to obtain

−
∫ 1

0

ln(2|y − t|)φ(t) dt =
1

2
y2 + δ

∫ y

0

F (t) dt− C1y + C2 (45)

in which C2 may be considered a second arbitrary constant at our disposal. An argument
similar to that which showed the equivalence of equations (42) and (43) also shows the
equivalence of equations (44) and (45). We will show that equation (45), and hence equation
(42), possesses a unique solution with the required regularity and φ(0) = φ(1) = 0.

As in [7] we make the (invertible) substitution y = cos2(σ/2), t = cos2(θ/2) and obtain

−
∫ π

0

ln | cos(θ)− cos(σ)|φ̂(θ) dθ = g(σ) (46)

for 0 < σ < π, where φ̂(θ) = 1
2
φ(cos2(θ/2)) sin(θ) and

g(σ) = C2 − C1 cos2(σ/2) +
1

2
cos4(σ/2) +

δ

2

∫ π

σ

F (cos2(θ/2)) sin(θ) dθ.

By using cos2(σ/2) = (1 + cos(σ))/2 we obtain

g(σ) =

(
C2 − C1

2
+

3

16

)
+

(
−C1

2
+

1

4

)
cos(σ) +

1

16
cos(2σ) +

δ

2

∫ π

σ

F (cos2(θ/2)) sin(θ) dθ.

Equation (46) can thus be written

(Kφ̂)(σ) = g(σ) (47)

where K denotes the integral operator on the right side of equation (46), g(σ) ≡ c1 +
c2 cos(σ) + 1

16
cos(2σ) + δG(σ) with c1 = −C1/2 + C2 + 3/16, c2 = −C1/2 + 1/4, and

G(σ) =
1

2

∫ π

σ

F ((1 + cos(θ))/2) sin(θ) dθ. (48)

We will show that for any given choice of C1 and C2 equation (47) possesses a unique solution
in L2(0, π), and that this solution can be used to recover the solution to equation (42).

To see this, we use Fact 3 from the previous section, that the operator K is compact and
self-adjoint on L2(0, π), with eigenvalues µ0 = π ln(2), µn = π/n for n ≥ 1, and orthonormal
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eigenfunctions φ0(σ) = 1/
√

π, φn(σ) =
√

2/π cos(nσ) for n ≥ 1. By Fact 2 the unique
L2(0, π) solution to equation (47) is thus given by

φ̂(σ) =
∞∑

n=0

1

µn

(g, φn)

=
∞∑

n=0

1

µn

(c1 + c2 cos(σ) +
1

16
cos(2σ), φn)φn + δ

∞∑
n=0

1

µn

(G, φn)φn

=
c1

π ln(2)
+

c2

π
cos(σ) +

1

8π
cos(2σ) + δ

∞∑
n=0

1

µn

(G, φn)φn (49)

where (·, ·) denotes the L2 inner product, provided the last sum on the right in (49) converges
in L2(0, π). This requires

∞∑
n=1

(
1

µn

(G, φn))2 < ∞. (50)

We now show that this is true, and that in fact the sum on the right in (49) actually
represents a C2(0, π) function. With G as defined by equation (48) repeated integration by
parts (taking derivatives off of sin(nσ) or cos(nσ), putting derivatives on G) shows that

∫ π

0

G(σ) cos(nσ) dσ = − 1

n5

∫ π

0

sin(nσ)G(5)(σ) dσ

since all endpoint terms at σ = 0 and σ = π in each integration by parts fortuitously vanish.
The function G(5) (which involves derivatives of f up the third order) is in L2(0, π), so that
we find 1

µn
(G, φn) = dn

n4 with dn = −
√

2/π3(G(5), sin(nσ)), and so
∑

n d2
n < ∞. As a result

the sum ∞∑
n=1

1

µn

(G, φn)φn(σ) =
√

2/π
∞∑

n=1

dn

n4
cos(nσ)

is in L2(0, π), and term-by-term differentiation shows the sum possesses a third derivative
in L2(0, π), and hence a continuous second derivative on [0, π]. Thus the unique (for a given
choice of C1 and C2) L2(0, π) solution φ̂(σ) to equation (46) is given by

φ̂(σ) =
c1

π ln(2)
+

c2

π
cos(σ) +

1

8π
cos(2σ) + δH(σ)

where

H(σ) = d0 +
∞∑

n=1

dn

n4
cos(nσ)

for the square-summable sequence {dn}.
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Note that if a C[0, 1] solution φ(y) to equation (42) exists, the corresponding function φ̂
satisfying equation (47) will certainly be in L2(0, π). Thus by considering equation (47), we
can be sure to locate a C[0, 1] to equation (42) if it exists.

Use σ = 2 arccos(
√

y) to obtain

φ̂(σ) =
c1

π ln(2)
+

c2

π
cos(2 arccos(

√
y)) +

1

8π
cos(4 arccos(

√
y)) + δH(2 arccos(

√
y)).

Note that for 0 < y < 1 we have cos(2 arccos(
√

y)) = 2y − 1 and cos(4 arccos(
√

y)) =

8y2−8y+1. With y = cos2(σ/2) and φ̂(σ) = 1
2
φ(cos2(σ/2)) sin(σ) we have sin(σ) = 2

√
y − y2

so that

φ(y) =
α(y)√
y − y2

(51)

where

α(y) =
c1

π ln(2)
+

c2

π
(2y − 1) +

1

8π
(8y2 − 8y + 1) + δH̃(y) (52)

with H̃(y) = H(2 arccos(
√

y)). Also note that

H̃(y) = d0 +
∞∑

n=1

dn

n4
cos(2n arccos(

√
y)) = d0 +

∞∑
n=1

dn

n4
Tn(2y − 1) (53)

where Tn denotes the nth Chebyshev polynomial of the first kind, which can be defined by
Tn(x) = cos(2n arccos(

√
(x + 1)/2)) (easily derived from the well-known formula Tn(x) =

cos(n arccos(x)) and the half-angle formula). Although φ̂ is in L2(0, π), this does not guar-
antee that φ(y) lies in L2(0, 1). However, the latter is indeed guaranteed if the constants c1

and c2 (or C1 and C2) are chosen correctly, as shown below.
Before proceeding, note that the Chebyshev polynomials satisfy sup−1≤x≤1 |Tn(x)| = 1

and sup−1≤x≤1 |T ′
n(x)| = n2. Moreover, since dk = −

√
2/π3(G(5), sin(kσ)) and G(5) can be

easily bounded in terms of ‖f‖C3 , we have |dk| ≤ C‖f‖C3 for some constant C and all k.
From (53) it is thus clear that H̃(y) is continuous on [0, 1], and term-by-term differentiation
of the right side of (53) shows that H̃ ′(y) is also continuous on [0, 1]. In particular, H̃(y) is
in C1[0, 1], and hence so is α(y). Finally, note that

|H̃(y)| =
∣∣∣∣∣d0 +

∞∑
n=1

dn

n4
Tn(2y − 1)

∣∣∣∣∣ ≤ sup
n
|dn|

∞∑
n=1

1

n4
≤ C‖f‖C3 . (54)

and similarly

|H̃ ′(y)| =
∣∣∣∣∣
∞∑

n=1

2dn

n4
T ′

n(2y − 1)

∣∣∣∣∣ ≤ 2 sup
n
|dn|

∞∑
n=1

1

n2
≤ C‖f‖C3 (55)
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for 0 < y < 1.
If we choose C1 and C2 in equation (45) as

C1 =
1

2
+ δπ(H̃(1)− H̃(0))

C2 =
1− 2 ln(2)

16
+

δπ

2
(H̃(1)− H̃(0))− δπ ln(2)

2
(H̃(0) + H̃(1))

then α(0) = α(1) = 0 and we find that φ is continuous on [0, 1] with limy→0+ φ(y) =
limy→1− φ(y) = 0, and in fact

φ(y) = − 1

π

√
y − y2 + δψ1(y) (56)

with

ψ1(y) =
(H̃(0)− H̃(1))y − H̃(0) + H̃(y)√

y − y2
(57)

To verify the remaining properties of φ, let r(y) = (H̃(0)− H̃(1))y− H̃(0)+ H̃(y) so that
r(0) = 0 and

r′(y) = H̃(0)− H̃(1) + H̃ ′(y).

From this and estimates (54), (55), we have

r(y) =

∫ y

0

r′(x) dx ≤ C‖f‖C3y.

One can similarly obtain a bound r(y) ≤ C‖f‖C3(1−y), so that in fact r(y) ≤ C‖f‖C3(y−y2)
for 0 < y < 1. Combining this with (57) provides a bound ψ1(y) ≤ C‖f‖C3

√
y − y2, and in

particular shows that φ is continuous on [0, 1]. Clearly ‖ψ1‖∞ ≤ C‖f‖C3 . The estimate on
r(y) also make it simple to check that φ′(y) is integrable on (0, 1) which completes the proof
of the Lemma. ¤.

Remark: A simple change of variables in the integral equation of the Lemma shows that
the integral equation

p.v.

∫ ε

0

φ′(t)
t− s

dt = 1 + δf(s), 0 < s < ε, (58)

has a unique solution φ of the form

φ(t) = − 1

π

√
t(ε− t) + δεψ1(t)

which is continuous on [0, ε], twice continuously-differentiable on (0, ε), with φ′ integrable on
(0, ε) and φ(0) = φ(ε) = 0. Also, ‖ψ1‖∞ is bounded by ‖f‖C3[0,ε].

27



5.3 The Main Theorem

Theorem 1 Let σε denote a linear crack with center p, at angle θ, of length ε. Let u be the
solution to the boundary value problem (1)-(3). Then

∫

σ

[u] ds =
π

4
(∇u0(p) · n)ε2 + O(ε3).

Note that the O(ε3) term may involve constant(s) that depend on p and/or θ. Through-
out we will consider the midpoint p and angle θ fixed, but consider σε as a function of ε; we
will suppress this dependence and simply write σ when convenient.

Proof: After translation and rotation we may assume that p is the origin and the short
crack σε spans the interval (0, ε) along the x axis. Note that on the crack ∂

∂n
= ∂

∂y
. Let d0

denote the distance from σε to ∂Ω.
As discussed above, take v0 to be defined by

v0(x, y) =

∫ ε

0

∂G

∂y
(x− s, y)φ(s) ds (59)

with φ chosen so that
∂v0

∂n
= −∂u0

∂n
(60)

and φ(0) = φ(ε) = 0. As shown above we have, from Lemma 2 (and specifically, equation
(58) and the following remarks) that φ is uniquely determined and is continuous on [0, ε],
twice-continuously differentiable on (0, ε), with φ(0) = φ(ε) = 0, of the form

φ(s) = 2
∂u0

∂y
(p, 0)

√
s(ε− s) + ε2ψ1(s) (61)

for some function ψ1. Note that although ψ1 depends on ε, ‖ψ1‖L∞(0,1) is bounded for ε in
any neighborhood of zero (as is ∂u0

∂y
(p, 0)).

Integrating over the crack shows that

∫

σε

[v0](s) ds =
π

4
ε2∂u0

∂y
(p, 0) + ε3ψ(ε).

for some bounded function ψ. More generally, if σε lies at an arbitrary angle with normal
vector n we obtain ∫

σε

[v0](s) ds =
π

4
ε2∂u0

∂n
(p) + ε3ψ(ε) (62)

where p denotes the midpoint of σε (really, p can be any point along the crack).
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Now from the definition of v0 in equation (59) we have, for (x, y) away from σε,

∂v0

∂x
(x, y) =

1

π

∫ ε

0

(x− s)y

((x− s)2 + y2)2
φ(s) ds

∂v0

∂y
(x, y) = − 1

2π

∫ ε

0

(x− s)2 − y2

((x− s)2 + y2)2
φ(s) ds

where without loss of generality we again assume that σε coincides with the interval (0, ε)
on the x axis. At any point on ∂Ω we can then bound

∣∣∣∣
∂v0

∂n

∣∣∣∣ =

∣∣∣∣n1
∂v0

∂x
+ n2

∂v0

∂y

∣∣∣∣

≤
√

n2
1 + n2

2

((
∂v0

∂x

)2

+

(
∂v0

∂y

)2
)1/2

≤
(

1

4π2

∫ ε

0

1

((x− s)2 + y2)2
ds

)1/2 (∫ ε

0

φ2(s) ds

)1/2

≤ C

√
ε

d2
0

√
ε3/6

≤ C̃ε2 (63)

for some constant C̃, where we have used |n| = 1, the estimate (61), and recall that d0 is
the minimum distance from σε to ∂Ω.

Now let w0 be the unique harmonic function on Ω with ∂w0

∂n
= −∂v0

∂n
on ∂Ω with nor-

malization
∫

∂Ω
w0 ds = 0. Standard elliptic estimates show that |∂w0/∂n| ≤ C̃ε2 for some

constant C̃ at all points on σε.
Define a function ũ = u0 + v0 + w0 on Ω \ σε. Note that ũ is harmonic, with ∂ũ

∂n
= g on

∂Ω,
∫

∂Ω
ũ ds = 0, and

∂ũ

∂n
=

∂w0

∂n
(64)

on σε.

Claim: ‖ũ− u‖L2(∂Ω) ≤ Cε3 for some constant C which is independent of ε.
To prove the claim, we examine the function r = u− ũ. The function satisfies

4r = 0 in Ω \ σε (65)

∂r

∂n
= 0 on ∂Ω

∂r

∂n
= −∂w0

∂n
on σε
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with the normalization
∫

∂Ω
r ds = 0. Construct a function r1 defined on Ω \ σε by

r1(x) =

∫

σε

∂G

∂ny

(x− s)ψ(s) ds (66)

analogous the definition of v0 in equation (59), where ψ is a function to be specified. In
fact, by Lemma 1 we can choose ψ so that r1 satisfies ∂r1

∂n
= ∂w0

∂n
on σε. Moreover, since

|∂w0

∂n
| ≤ C2ε

2 at all point on σε, we find that |ψ|L2σε
≤ C3ε

2. Estimates analogous to those

leading to (63) show that |∂r1

∂n
| ≤ C4ε

4 on ∂Ω, and it simple to estimate |r1| ≤ C5ε
3 on ∂Ω.

The function r2 = r + r1 is harmonic in Ω \ σε with ∂r2

∂n
= ∂r1

∂n
on ∂Ω with

∂r2

∂n
= 0

on σε, and also
∫

∂Ω
r2 ds = 0. Integrating by parts shows that

∫

Ω\σε

|∇r2|2 dx =

∫

∂Ω

r2
∂r1

∂n
ds. (67)

Thus

‖∇r2‖2
L2(Ω\σε)

≤ ‖r2‖L2(∂Ω)‖∂r1

∂n
‖L2(∂Ω)

≤ C‖r2‖H1(Ω\σε)‖
∂r1

∂n
‖L2(∂Ω) (68)

in which the constant C can be made independent of σ, since σε stays away from a neigh-
borhood of ∂Ω.

From standard elliptic theory we can bound

‖r2‖L2(∂Ω) ≤ C6(ε)‖∂r1/∂n‖L2(∂Ω) (69)

where the constant C6 may depend on ε. However, one can easily show that C6(ε) < C6(ε0)
for ε < ε0 where ε0 > 0 is fixed. Specifically, from 4r2 = 0 in Ω \ σε with ∂r2

∂n
= ∂r1

∂n
on ∂Ω

and ∂r2

∂n
= 0 on σε we obtain, from integration by parts,

∫

Ω\σε

|∇r2|2 dx =

∫

∂Ω

r2
∂r1

∂n
ds

so that

‖∇r2‖2
L2(Ω\σε)

≤ ‖r2‖L2(∂Ω)‖∂r1/∂n‖L2(∂Ω)

≤ C‖r2‖H1(Ω\σε)‖∂r1/∂n‖L2(∂Ω) (70)
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for some constant C which can be taken independently of ε (provided σε remains away from
a fixed neighborhood of ∂Ω; this may need filling out; consider neighborhood of ∂Ω).

Now note that we can also obtain a bound

‖r2‖L2(Ω\σε) ≤ C‖∇r2‖L2(Ω\σε) (71)

where C is independent of ε. To see this, note that the smallest eigenvalue for the Laplacian
on the space V (ε) = {φ ∈ H1(Ω \ σε),

∫
∂Ω

φ ds = 0} is given by

λε = inf
V (ε)

‖∇φ‖L2(Ω\σε)

‖φ‖L2(Ω\σε)

= inf
V (ε)

‖∇φ‖L2(Ω)

‖φ‖L2(Ω)

where we extend by zero to all of Ω. Since V (ε1) ⊂ V (ε2) for ε1 < ε2, we clearly have
λε1 ≥ λε2 for ε1 < ε2. Fix ε0 > 0 so that for all ε < ε0 we have λε ≥ λε0 . It then follows that
for φ ∈ V (ε) we have

‖∇φ‖L2(Ω\σε)

‖φ‖L2(Ω\σε)

≥ λε ≥ λε0 .

A bit of rearrangement gives

‖φ‖L2(Ω\σε) ≤
1

λε0

‖∇φ‖L2(Ω\σε)

which shows inequality (71).
From (71) we immediately obtain

‖r2‖H1(Ω\σε) ≤ ‖r2‖L2(Ω\σε) + ‖∇r2‖L2(Ω\σε) ≤ C‖∇r2‖L2(Ω\σε). (72)

Combining inequalities (70) and (72) shows that

‖r2‖H1(Ω\σε) ≤ C‖∂r1/∂n‖L2(∂Ω)

for some constant C which is independent of ε. From this we obtain the estimate (69) with
C independent of ε.

As a consequence of (69) we find that ‖r2‖L2(∂Ω) = O(ε4). It follows that ‖u− ũ‖L2(∂Ω) =
‖r‖L2(∂Ω) = ‖r1 − r2‖L2(∂Ω) = O(ε3), as the Claim asserts.

With the Claim established, we now note that

∫

σ

[u] ds =

∫

σ

[ũ] ds +

∫

σ

[r] ds.
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But since
∫

σ
[r] ds can be computed as

∫
∂Ω

rψ ds for a suitable function ψ (independent of
the crack length ε) we conclude that

∫
σ
[r] ds = O(ε3) and so

∫

σ

[u] ds =

∫

σ

[ũ] ds + O(ε3).

But [ũ] = [u0] + [v0] + [w0] = [v0]. As a result

∫

σ

[ũ] ds =

∫

σ

[v0] ds

and from equation (62) we obtain

∫

σ

[u] ds =
π

4
ε2∂u0

∂n
(p) + O(ε3)

which proves Theorem 1.

6 Conclusion

In this paper, we offered an alternative algorithm for accurately locating a single, perfectly
insulating, linear crack in a two dimensional region. This algorithm relied on concepts from
linear algebra and, more importantly, analysis leading to the relation of the crack length
to the integral of the temperature jump over the crack. We then employed the ideas from
this algorithm in the numerical approximation of the locations of multiple small, perfectly
insulating, linear cracks. This numerical approximation is improved from other methods
inasmuch as it does not rely on solving a boundary value problem. Removing this necessity
greatly expedites the process of locating multiple cracks. We also proved that an optimal
heat influx, g, always exists, and can be found explicitly for any two-dimensional region.
Finally, we included a example of the algorithm used in the location of a single crack in the
region of the unit disk and several examples of the numerical approximation of the locations
of multiple cracks inside of the unit disk.

There are many unexplored facets to this problem. First, as demonstrated in the Crack
Reconstruction Section, it is important to know the number of cracks lying in a region
before attempting to approximate their locations. Does the α function give some sort of
indication about the number of cracks lying inside of a particular region? Does there exist
some method by which the number of cracks can be ascertained before attempting numerical
reconstruction?

Also, could the algorithm offered for locating a single crack be extended to cracks which
are non-linear in some fashion? Would it offer any indication about the shape of the crack?
However, due to the fact that our approximation basically treated the entire crack as being
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the midpoint, some work would have to be done with ∂Γ
∂n

without employing this approxima-
tion, perhaps using integration by parts.

The most interesting problem, however, is to rid the necessity of using approximate
numerical methods to locate multiple cracks. The trouble here is determining which char-
acteristics of (5) are influenced by which crack. Essentially, we need to find the individual
constituents of a sum given only the sum. Is there some way in which the approximation
employed in locating a single crack can be generalized to multiple cracks without relying on
purely numerical methods?
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