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Abstract

In this paper we examine the inverse problem of determining the length of a
one-dimensional bar from thermal measurements (temperature and heat flux) at
one end of the bar (the “accessible” end); the other inaccessible end of the bar
is assumed to be moving. We develop two different approaches to estimating the
length of the bar, and show how one approach can also be adapted to find unknown
boundary conditions at the inaccessible end of the bar.
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1 Introduction

In this paper we will study the problem of determining the time-dependent length of a one-
dimensional bar from thermal measurements at one end of the bar. The interest for this
problem originates from monitoring blast furnaces. We can regard the blast furnace as a
large container filled with molten metal. Due to various chemical or mechanical reactions
the thickness of the walls of the blast furnace can change with time. For example, corrosive
effects can cause the walls to become thinner, and similarly, deposits on the walls can result
in increasing thickness. Since the extreme thinning of the walls can be hazardous, it is
important to know the thickness of the walls at all times. However, for practical and
economical reasons, we cannot directly measure the thickness of the walls, and therefore
an approximation of the thickness is desired. We may attempt estimation of the wall
thickness or inner wall profile using measurements of the outer wall temperature and heat
flux, and knowledge of the inner wall temperature (determined by the temperature of
the molten interior, assumed known). This results in an inverse problem for the heat
equation.

Such problems have been considered using traditional optimization-based fit-to-data
approaches (see [4]), or by converting the problem to a version of the so-called “sideways
heat equation” (see [2]). The situation is not entirely unlike coefficient recovery problems
for parabolic equations, e.g., see [1] and the references therein.

In this paper we consider a simplified version of the general problem, in which the
domain of interest is a one-dimensional bar. We also show how one approach can be
used to determine the governing boundary conditions at some inaccessible portion of the
domain.

2 Forward Problem

For the one-dimensional version of the problem, we use x to indicate the position along
the bar, with x = 0 the accessible left end of the bar and x = L(t) the inaccessible right
end of the bar. Physically, x = 0 is the outer portion of the furnace wall and x = L(t)
the inner portion, in contact with the molten interior of the furnace. We use t to denote
time, and u(t, x) to represent the temperature of the bar at time t and position x. After
appropriate rescaling we assume that u(t, x) satisfies the usual heat equation

ut − uxx = 0, 0 < x < L(t), t > 0 (1)

−ux(t, 0) = g(t), (2)

u(t, L(t)) = A(t), (3)

u(0, x) = 0. (4)

Here g(t) is the outward heat flux at x = 0, assumed known (perhaps even capable of
being controlled to some extent). We use A(t) for the temperature at the right end of the
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bar and assume that A(t) is known (and typically we assumed this is constant). Note we
are using zero initial conditions, although this is not essential.

We also assume that u(t, 0) can be measured, and we use a(t) = u(t, 0) to denote the
temperature “data” at the left end.

It should be noted that for any given continuous functions g(t) and A(t), the equations
(1)-(4) possess a unique solution u(t, x), say in the space of continuous functions.

3 Method 1: A Special Identity and Test Functions

In the following subsections we illustrate how a certain identity, together with carefully
chosen “test functions”, can be used to extract information about the inaccessible end of
the bar from Cauchy data at the accessible end of the bar. We begin with an illustration
of how one car recover the length of the bar, under the assumption that the length is
constant. We then illustrate how one can recover boundary condition at the inaccessible
end, using the same identity. Finally, we illustrate how one can approximately determine
the changing length of the bar, at least providing certain assumptions are met.

3.1 The Identity

In this section we illustrate our first method for recovering the function L(t), as well as
recovering unknown boundary conditions at the right end of the bar. For recovery of L(t)
we assume that L(t) varies by a “small” amount around some fixed length L0.

In fact, for the moment let us assume that L is constant. If ψ(t, x) satisfies the
backward heat equation ψt + ψxx = 0 for x ∈ (0, L) and t > 0 then

−
∫ T

0

(ψ(t, 0)g(t) + ψx(t, 0)a(t)) dt +

∫ L

0

ψ(T, x)u(T, x) dx

=

∫ T

0

(ψ(t, L)ux(t, L) − ψx(t, L)u(t, L) dt

(5)

as shown in the Appendix. Recall that a(t) = u(t, 0) and g(t) = −ux(t, 0).
This identity will be used to help solve our inverse problem. With suitably chosen

test functions for ψ, it allows us to extract information about u(t, L) and ux(t, L) from
knowledge of u(t, 0), ux(t, 0), u(T, x).

3.2 Illustration 1: Recovering Constant L

As a simple illustration of how equation (5) can be used to recover information about the
other end of the bar, we consider the special case in which L is an unknown constant. In
this section we will illustrate how one can determine L from knowledge of a(t) and g0(t)
by using suitably chosen test functions in equation (5).
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First note, however, that we typically don’t have data for u(T, x), 0 < x < L, so the
last integral on the left in equation (5) presents a problem. But for simplicity we will
make the assumption that A(t) ≡ 0 at the right end of the bar—note that by rescaling
this is entirely equivalent to A(t) equal to any constant at the right end. In this case it’s
reasonable to approximate u(T, x) ≈ 0, at least for T large, and assuming that g decays to
zero (a more general approximation is possible, however, especially if g does not decay).
In this case the last integral on the left in equation (5) vanishes, and the entire left side
of equation (5) may be considered known.

We now define special test functions which allow us to extract information about L
from left side bar data. Specifically, suppose some function ψ(t, x) satisfies the backwards
heat equation ψt(t, x) + ψxx(t, x) = 0 and also that ψ(t, L) = 0 (we treat L here as some
unknown constant). One can easily check that the functions

φα(t, x) =
1

2
√

2α

(
−e−

√
α
2
(x−L) cos(αt +

√
α

2
(x− L)) + e

√
α
2
(x−L) cos(αt−

√
α

2
(x− L))

+ e−
√

α
2
(x−L) sin(αt +

√
α

2
(x− L))− e

√
α
2
(x−L) sin(αt−

√
α

2
(x− L))

)
(6)

satisfy these conditions for any real α, and so are legitimate choices for ψ in equation (5).
Note also that ∂φα

∂x
(t, L) = cos(αt).

Note that we cannot take α = 0 in equation (6), but one can easily check that as α
approaches zero the function φα(t, x) approaches φ0(t, x) = x − L, which itself satisfies
the backward heat equation with φ0(t, L) = 0.

To approximate the length of the one-dimensional bar (or the thickness of the blast
furnace wall) we will use the identity (5) and our special class of test functions (6). We also
make use of the assumption that L is a constant, that A(t) = 0, and use the approximation
that u(T, x) ≈ 0 for reasonably large T . With this we find that, with ψ = φα in equation
(5), we obtain ∫ T

0

(φα(t, 0)g(t) +
∂φα

∂x
a(t)) dt = 0. (7)

Note that the left side of above is computable from the measured boundary data a(t) and
g(t).

Therefore, for the correct value of L, the left side of the above equation should be
equal to zero. To estimate L we choose some T > 0 and some α, compute the integral
on the left in equation (7) using the trapezoidal rule for multiple values of L, until we
get a result that is approximately zero (actually, we use an intelligent root-finding scheme
based on bisection). This value of L will be our approximation of the actual length.

Here is an example of the procedure. In this case the true value for the length of the
bar is 1.32. We use input flux g(t) = e−t on the left, u(t, L) = 0 on the right, zero initial
data; under these conditions the solution u does in fact decay to zero in time, over the
entire bar. We use equation (7) with α = 0.1, with the trapezoidal rule to evaluate the
integral. We vary the value of L in the definition (6) from L = 0 to L = 2 and graph the

4



right side of (7).
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L

Figure 1: Approximation of L.

The graph crosses the axis at very nearly the exact value, L = 1.32.
We have not yet determined under what conditions such an approach is guaranteed

to uniquely determine L.

3.3 Illustration 2: Finding Unknown Boundary Conditions at
x = L

In this section we illustrate how the identity (5) can be used, with suitably chosen test
functions, to recover an unknown boundary condition at the right end of the bar.

In what follows we assume that L is a known constant, that u(t, x) satisfies the heat
equation for 0 < x < L, t > 0, with measured boundary data u(t, 0) = a(t), −ux(t, 0) =
g(t) at the left end of the bar an unknown boundary condition of the form

ux(t, L) = K(t)(A(t)− u(t, L)) (8)

so the heat flux at the right end of the bar satisfies a variation of Newton’s law of cooling.
Here A(t) is some possibly unknown time-dependent temperature of the molten metal and
K(t) is some possibly unknown constant of proportionality that relates to how fast heat
travels through the material of the wall. From these conditions, our goal is to determine
the values of both K(t) and/or A(t) over some time range.

There are many variations of the problem which one can consider—K(t) unknown and
A(t) known, or K(t) known and A(t) unknown, etc.—but a similar approach works for
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each. As an illustration we’ll consider the case in which K and A are unknown constants,
both to be estimated from measurements at the left end of the bar.

It can easily be shown that if K is not constant and u(t, L) is not constant in time
then both K and A can be found and are unique, for if we have values for u(t, L) and
ux(t, L) at two different times t1 and t2, then we can solve for K and A independently
using the following equations

K =
ux(t2, L)− ux(t1, L)

u(t1, L)− u(t2, L)
(9)

A =
ux(t2, L)u(t1, L)− ux(t1, L)u(t2, L)

ux(t2, L)− ux(t1, L)
(10)

Assuming that K is not zero (and noise-free data) we see that the numerator on the right
in equation (9) is not zero, and hence so is the denominator on the right in equation (10),
so A is recovered.

We will assume there are zero initial conditions and that we have measurements of
u(t, 0) = a(t) and −ux(t, 0) = g(t) for a given time interval t ∈ (0, T ). We will first use
the identity (5) with the ψ as our special φα(t, x) test functions defined by equation (6),
to solve for u(t, L) for 0 < t < T . In fact, with α = αj = πj

T
, j = 0, 1, 2, ... and using the

facts that using φα(t, L) = 0 and ∂φα

∂x
(t, L) = cos(αt) we have

−
∫ T

0

(φαj
(t, 0)g(t) +

∂φαj

∂x
(t, 0)a(t)) dt =

∫ T

0

cos(
jπ

T
t)u(t, L) dt (11)

where we have again assumed that the integral for x ∈ (0, L) is negligible.
Let aj denote the left side of equation (11), which is entirely computable from measured

boundary data. Now recall that the Fourier series of a function f(t) is defined as

f(t) =
∞∑

j=0

aj cos(
jπt

T
)

where

aj =
2

T

∫ T

0

cos(
jπt

T
)f(t)dt, j = 1, 2, 3, . . .

a0 =
1

T

∫ T

0

f(t)dt

Therefore, the right side of (11) times 2
T

for j ≥ 1, or 1
T

for j = 0 gives minus the Fourier
coefficients of u(t, L). We can thus reconstruct u(t, L) for 0 < t < T .

Similarly, we can find the Fourier coefficients of ux(t, L), by using a slightly different
class of test functions. Specifically, define

ψα(t, x) =
1

2
e−
√

α
2
(x−L) cos(αt +

√
α

2
(x− L)) +

1

2
e−
√

α
2
(L−x) cos(αt +

√
α

2
(L− x))) (12)
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It’s easy to check that the ψα satisfy the backwards heat equation and also that ∂ψα

∂x
(t, L) =

0. We also have that ψα(t, L) = cos(αt) for any real constant α. Using these in identity
(5) with α = αj = jπ

T
, j = 0, 1, 2, . . . produces

∫ T

0

(ψαj
(t, 0)g(t) +

∂ψαj

∂x
(t, 0)a(t)) dt =

∫ T

0

cos(
jπ

T
t)ux(t, L) dt (13)

Having recovered ux(t, L) for 0 < t < T , we need only choose two times t1 and t2 where
u(t1, L) 6= u(t2, L) and use equations (10) and (9) to estimate A and K. It seems likely
that one would want to choose times for which the difference u(t1, L)−u(t2, L) is as large
in magnitude as possible, to stabilize the procedure.

Below is an example, in which the bar has length 1. The input flux is g(t) = e−t,
zero initial condition, and at the right the boundary condition is ux(t, 1) = K(A−u(t, 1))
with K = 0.54 and A = 0. With 15 Fourier modes for 0 < t < 15, the reconstructed
temperature and flux are shown in Figure 3.3. Using these reconstructed functions with
t1 = 1 and t2 = 6 in equations (10) and (9) produces estimates k = 0.544 and A = 0.003,
quite good.

Reconstructed Temperature

–0.1

0

0.1

0.2

0.3

0.4

2 4 6 8 10 12 14
t

Reconstructed Flux

–0.25

–0.2

–0.15

–0.1

–0.05

0

0.05

2 4 6 8 10 12 14t

Figure 3: Reconstruction of temperature and flux.

It’s also quite easy to see that if A and/or K are time-dependent, but one know either
one, then the other can be recovered using this procedure, for t ∈ (0, T ).

3.4 Illustration 3: Recovering L(t)

We now consider the full problem of recovering a time-dependent length L(t) on some
interval 0 < t < T . The particular approach we use makes the assumptions that L(t)
varies by only a small amount about a known constant value, and that the rate of variation
is small. The central idea is the use of a slight variation of identity (5), again with
appropriate test functions.

The fact that u(t, x) is defined by a PDE (1) on a variable domain presents some
difficulty, so we’ll make a change of variable to fix the spatial domain. Define a function
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v(t, y) = u(t, x) with y = x
L(t)

(so v(t, y) = u(t, L(t)y)). It’s simple to check that v(t, y)
satisfies

vt(t, y)− yL′(t)
L(t)

vy(t, y)− 1

L2(t)
vyy(t, y) = 0, 0 < y < 1, t > 0 (14)

−vy(t, 0) = L(t)g(t), (15)

v(t, 1) = A(t), (16)

v(0, y) = 0 (17)

with v(t, 1) = a(t). Note that v(t, y) lives on the fixed domain 0 < y < 1, but L(t) now
appears in the PDE itself.

We now perform a linearization of the problem with respect to L(t), by supposing
that L(t) = L0 + q(t), where L0 is some known initial constant and q(t) is some function
which is small, say as measured in supremum norm. For simplicity we’ll consider the case
L0 = 1. Now let v(t, y) = V (t, y) + r(t, y), where V (t, y) satisfies the heat equation and
is the solution to (14)-(17) when q(t) = 0 (so V is the solution to the heat equation on
the constant length bar). The function r(t, y) is the perturbation caused by q(t). Since
we are assuming q(t) is small, we expect that r(t, y) is also small in magnitude.

Now go back to the equations that v(t, y) satisfies. With A(t) = 0 and zero initial
conditions we get that V (t, y) satisfies −Vy(t, 0) = g(t) and V (t, 1) = 0 as boundary
conditions. By substituting v(t, y) = V (t, y) + r(t, y) into equations (14)-(17) we obtain

Vt(t, y) + rt(t, y) − yq′(t)
1 + q(t)

(Vy(t, y) + ry(t, y))

− 1

(1 + q(t))2
(Vyy(t, y) + ryy(t, y)) = 0, (18)

−(Vy(t, 0) + ry(t, 0)) = (1 + q(t))g(t), (19)

V (t, 1) + r(t, 1) = 0, (20)

V (0, y) + r(0, y) = 0 (21)

and also that V (t, 0) + r(t, 0) = a(t).
Using the fact that V (t, y) satisfies equations (18)-(21) with q(t) ≡ 0, we can simplify

the above equations to obtain the boundary conditions of r(t, y). Equations (19)-(21)
reduce to

−ry(t, 0) = q(t)g0(t) (22)

r(t, 1) = 0 (23)

r(0, y) = 0 (24)

Note also that
r(t, 0) = a(t)− V (t, 0). (25)

Now look at equation (18)—it’s clear that the relation between r and q is nonlinear,
so we will linearized this relationship. Specifically, notice that the term 1

1+q(t)
can be
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expressed as the Taylor series 1 − q(t) + q2(t) − q3(t) + . . ., and since q(t) is assumed to
be small we can drop off the terms q2(t) and higher, leaving us with

1

1 + q(t)
≈ 1− q(t)

Similarly, we can reduce the term 1
(1+q(t))2

in (18) to obtain

1

(1 + q(t))2
≈ 1− 2q(t).

Putting this back into equation (18) gives us

Vt(t, y) + rt(t, y)− yq′(t)(1− q(t))(Vy(t, y) + ry(t, y)− (1− 2q(t))(Vyy(t, y) + ryy(t, y) = 0

Now we linearize by assuming that q(t), and hence r(t, y), are small. Moreover, we
also suppose that q′(t) is small (the bar does not change length rapidly), so we can drop
out any second order and higher terms to get

Vt(t, y) + rt(t, y)− yq′(t)Vy(t, y)− Vyy(t, y)− ryy(t, y) + 2q(t)Vyy(t, y) = 0

Using the fact that V (t, y) satisfies the heat equation (Vt(t, y) − Vyy(t, y) = 0) and rear-
ranging the above equation we obtain

rt(t, y)− ryy(t, y) = yq′(t)Vy(t, y)− 2q(t)Vyy(t, y) (26)

Here V (t, y), g(t), and a(t) are all known and our goal is to find q(t). Equation (26),
together with boundary/initial conditions (22)-(24) and “measured” data in equation
(25) constitute the linearized version of the problem.

Now let ψ be a function which satisfies the backward heat equation for 0 < x < 1 and
t > 0. In the Appendix we prove

−
∫ T

0

(ψ(t, 0)q(t)g(t) + ψy(t, 0)(a(t)− V (t, 0)) dt =

−
∫ L

0

ψ(T, y)r(T, y)dy +

∫ T

0

ψ(t, L)ry(t, L) dt

+

∫ T

0

∫ L

0

ψ(t, y)(yq′(t)Vy(t, y)− 2q(t)Vyy(t, y)) dy dt (27)

which is merely a slight variation of equation (5). As before, we will assume the term

− ∫ L

0
ψ(T, y)r(T, y)dy decays to zero, which is reasonable if either q(t) or the input flux

g(t) decays. Also we will use the fact that we will choose our special ψ(t, y) function such
that ψ(t, 1) = 0. This leaves us with

−
∫ T

0

(ψ(t, 0)q(t)g(t) + ψy(t, 0)(a(t)− V (t, 0))) dt

=

∫ T

0

∫ L

0

ψ(t, y)(yq′(t)Vy(t, y)− 2q(t)Vyy(t, y)) dy dt
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Now we invoke the assumption that L(t) is “slowly” varying, so that q′(t) is small,

and we can drop the term
∫ T

0

∫ L

0
φ(t, y)yq′(t)Vy(t, y)dydt from the above equation to get

∫ T

0

(ψ(t, 0)q(t)g(t) + ψy(t, 0)(a(t)− V (t, 0)))dt = 2

∫ T

0

∫ L

0

ψ(t, y)q(t)Vyy(t, y)) dy dt

Also notice that since V (t, y) satisfies the heat equation (Vt − Vyy = 0), then Vyy = Vt.
A little rearrangement of the above equation yields

∫ T

0

q(t)

(
ψ(t, 0)g(t)− 2

∫ L

0

ψ(t, y)Vt(t, y)dy

)
dt = −

∫ T

0

ψy(t, 0)(a(t)−V (t, 0)) dt. (28)

Notice that we can rewrite (28) in the form

∫ T

0

M(t)q(t)dt =

∫ T

0

D(t) dt (29)

where

M(t) = ψ(t, 0)g(t) − 2

∫ L

0

ψ(t, y)Vt(t, y) dy

and
D(t) = −ψy(t, 0)(a(t)− V (t, 0)).

Differentiating both sides of equation (29) with respect to T shows that M(t)q(t) = D(t).
Therefore, we can approximate

q(t) =
D(t)

M(t)
(30)

Hence, we now have a way to find q(t). Everything in (30) is known and can be computed
for any chosen test function which satisfies the backward heat equation with ψ(t, 1) = 0.
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In the reconstruction below in Figure 2 we use the test functions defined by equation
(6). The actual length of the bar is give by L(t) = 1 + 0.2 sin(2

3
t) (so q(t) = 0.2 sin(2

3
t)),

which we attempt to recover from the data g(t) and a(t) for 0 < t < 10 using measure-
ments of a(t) and g(t) at time ti = i/10, 0 ≤ i ≤ 100. The boundary condition we used
is g(t) = e−t as the input flux on the left end of the bar, and u(t, 1) = 0 on the right
(so the solution does indeed decay to zero as we approximated in our derivation). For a
small α in φα(t, x), we obtain a relatively good approximation of q(t). In this case we
used α = 0.1. Therefore our time dependent length of the bar is equivalent to 1 + q(t) for
any given time in the interval 0 to T.

–0.8

–0.6

–0.4

–0.2

0

0.2

2 4 6 8 10

Figure 2: Approximation of q(t).

In the above figure, the dashed curve is the actual q(t), while the solid line represents our
approximation of the actual q(t).

4 The Integral Equation Approach for Estimating

L(t)

4.1 Representation of Solution via Neumann Kernel

The problem (1)-(4) has a unique solution that can be found using different approaches.
One method for solving the forward problem involves representing the solution via the
Neumann Kernel for this PDE and boundary condition. We will extensively use the
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fundamental solution to the heat equation (the Green’s Function)

G(t, x) =
e
−x2

4t

2
√

πt

and the Neumann kernel for the problem (1)-(4)

N(t, x) = G(t, x) +
∞∑

k=1

(−1)k(G(t, x + 2Lk) + G(t, x− 2Lk)).

One can check that at t = 0, x = 0, N(t, x) has the same singularity as G(t, x), and also
that Nx(t, 0) = 0 for all t > 0, and N(0, x) = N(t, L) = 0 for all t > 0. As a consequence,
we can write

1

2
a(t) =

∫ t

0

N(t− s, 0)g(s)ds−
∫ t

0

Nx(t− s, L)A(s)ds.

See [3], chapter 7, section 1(c) for the details.
For simplicity in what follows we’ll consider A(t) = 0 and define

N0(t) = N(t, 0) =
1√
πt

(
1

2
+

∞∑

k=1

(−1)ke
−L2k2

t

)

to get a simplified identity

1

2
a(t) =

∫ t

0

N0(t− s)g(s)ds (31)

Equation (31) will form the basis of our analysis.

4.2 Change of time variables

In section 3.4 we performed a change of variables y = x/L(t). To further simplify things,
we will perform a change of time variables as well. Suppose τ = φ(t) for some function
φ. We will also define w(τ, y) = w(φ(t), y) = v(t, y), where v(t, y) satisfies equation (14),
so that

vt = φ′(t)wτ , vy = wy, vyy = wyy.

From equation (14), we find that w satisfies

φ′(t)wτ − yL′(t)
L(t)

wy − 1

L2
wyy = 0, 0 < y < 1, τ > 0.

Now we choose φ(t) such that φ′(t) = 1
L2(t)

and φ(0) = 0, i.e., let

φ(t) =

∫ t

0

1

L2(s)
ds (32)
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Note that φ is strictly increasing and, therefore invertible. We can rewrite the above PDE
substituting for φ(t) and then multiply both sides by L2

wτ − yL′(t)L(t)wy − wyy = 0, 0 < y < 1, τ > 0.

If we let M(τ) = L′(t)L(t) = L′(φ−1(τ))L(φ−1(τ)), then we have the following PDE

wτ − yM(τ)wy − wyy = 0, 0 < y < 1, τ > 0 (33)

with boundary conditions

−wy(τ, 0) = L(φ−1(τ))g(φ−1(τ))

w(τ, 1) = A(φ−1(τ)),

measured data w(τ, 0) = a(φ−1(τ)), and initial condition w(0, y) = 0. For simplicity, let’s
assume that L changes relatively slowly, that is, L′ ≈ 0. Then M(τ) ≈ 0, the second term
in equation (33) can be dropped, and w now satisfies the usual heat equation. If again
we assume that A(φ−1(τ)) is identically zero, and that L(0) = 1 (our initial length of the
bar), we can use the integral equation formula to obtain

1

2
a(φ−1(τ)) =

∫ τ

0

N0(τ − s)L(φ−1(s))g(φ−1(s))ds (34)

We can simplify equation (34) a bit. Let r = φ−1(s), so that s = φ(r), and ds = φ′(r).
Also note τ = φ(t), and note that L(r) = 1

φ′(r) . Then equation (34) becomes

1

2
a(t) =

∫ t

0

N0(φ(t)− φ(r))
√

φ′(r)g(r)dr (35)

In the above integral equation, we know the values for a(t) and g(t) on some interval
0 < t < T (we can measure the discrete temperature data on the left end of the bar
and we control the heat input). Our goal is to find φ(t), from which we can recover
L(t) = 1/

√
φ′(t) from equation (32).

4.3 Discretization and Recovery of L(t)

Since we cannot solve equation (35) for φ(t) explicitly, we shall use numerical approxi-
mation. Let ti = ih and φi = φ(ti) for some small stepsize h. Let t = Mh, also note
that φ(0) = 0, φ′ > 0, φ′(0) = 1/L2(0). Now, using the trapezoidal rule and a centered
difference for φ′, we get the following discretized version of equation (35):

1

2
a(tM) =

h

2

N0(φM)

L(0)
g(0) +

M−2∑
i=1

N0(φM − φi)g(ti)
√

h(φi+1 − φi−1)/2

+
1

2
N0(φM − φM−1)g(tM−1)

√
h(φM − φM−2)/2

+ g(tM)

√
h

π
(36)

13



The last term in the above equation needs special explanation. Since we can’t evaluate
N0(0), the trapezoidal rule works only from r = 0 to r = t−h, thus on the last subinterval
t − h < r < t we have to do something different to approximate the integral. For
small enough h we can get good results by just using a linear approximation φ(r) =
D(r − (M − 1)h) + φM−1 with D = φM−φM−1

h
≈ φ′(t). Also, approximate N0(t) ≈ 1

2
√

πt

since for small t we have that
∞∑

k=1

(−1)ke−
L2k2

t ≈ 0. Therefore, the last term turns out to

be
∫ t

t−h

N0(φ(t)− φ(r))
√

φ′(r)g(r)dr

≈
∫ t

t−h

1

2
√

π(φM − φM−1 −D(r − (M − 1)h))

√
Dg(tM)dr =

√
h

π
g(tM)

where φM ≈ φ(t).
Now we know that φ0 = 0 and we let φ1 = h (this is a reasonable extrapolation since

the φ′(0) = 1/L2(0) = 1). To find φ2, consider equation (36) in the case M = 2. The
resulting equation implicitly determines the value of φ2 (in terms of φ0 and φ1). We can
find φ2 using a standard bisection method. Having found φ2 we then consider equation
(36) for M = 3, which implicitly determines φ3 in terms of the previous found quantities
φ0, φ1, φ2, and of course the data. We can clearly continue this procedure, using root
bracketing and bisection methods, to approximate all values φi for as long as we have
data a(t) and g(t). Once we know these values, we can use the definition of φ(t) to
recover L(t).

Below are examples in which the bar length is given by L(t) = 1 + 0.2 sin(t/1.3), as in
Figure 2, with input flux g(t) = e−t and right hand side boundary condition A(t) = 0.
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Reconstruction of L(t)
Actual L(t)
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Figure 4: Reconstruction of L(t) (assumed L′ ≈ 0).

Figure 5 shows the result of a reconstruction in which the condition that L′ is small is
violated. Here we have L(t) = 0.7 sin(t/2) + et/10, flux g(t) = e−t, with A(t) = 0. Despite
the fairly rapidly changing value of L, the method still works well.

Reconstruction of L(t)
Actual L(t)
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1.6

1.8

2

L

0 2 4 6 8 10

time

Figure 5: Reconstruction of L(t) (assumption L′ ≈ 0 violated).
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5 Conclusion

The first reconstruction method, though making more assumptions and giving slightly
less accurate reconstructions, involves much less computation. The second method suffers
less when the assumption of small (and slow) changes in the length is violated, but at the
cost of more intensive numerical computations.

There is still plenty of future work to be done involving both methods for finding the
length of the one-dimensional bar. For example, we have not done a thorough analysis
of the error introduced by linearizing and assuming that L(t) changes slowly in the first
reconstruction method. Figure 2 also illustrates a curious phenomena which we do not
fully understand—the reconstruction “lags” the true behavior of the bar; this holds true
for both methods, though it is less pronounced for the second method . We also have
not established solvability of the integral equation (35), nor stability properties for the
solution.

6 Appendix: Two Identities

Let u(t, x) denote a solution to the heat equation ut−uxx = 0 on a fixed domain 0 < x < L
(so L is constant), with zero initial condition u(0, x) = 0. Let ψ(t, x) be suitably smooth
function for 0 < x < L, 0 < t < T for some T > 0. Then we obviously have

∫ T

0

∫ L

0

ψ(t, x)(ut(t, x)− uxx(t, x)) dx dt = 0 (37)

We can split this integral into two pieces to get,

∫ L

0

∫ T

0

ψ(t, x)ut(t, x) dt dx −
∫ T

0

∫ L

0

ψ(t, x)uxx(t, x) dx dt = 0 (38)

Integrate the first integral on the left above by parts in t and use u(0, x) = 0 to find,

∫ L

0

∫ T

0

ψ(t, x)ut(t, x) dt dx =

∫ L

0

ψ(T, x)u(T, x) dx −
∫ L

0

∫ T

0

ψt(t, x)u(t, x) dt dx(39)

Now consider the second integral on the left in (38) and integrate it by parts in x:

∫ L

0

ψ(t, x)uxx(t, x) dx dt =

∫ T

0

(ψ(t, L)ux(t, L) − ψ(t, 0)ux(t, 0)) dt

−
∫ T

0

∫ L

0

ψx(t, x)ux(t, x) dx dt

Integrating by parts in x again on the second integral above yields

∫ L

0

ψ(t, x)uxx(t, x) dx dt =

∫ T

0

(ψ(t, L)ux(t, L) − ψ(t, 0)ux(t, 0)) dt
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−
∫ T

0

(ψx(t, L)u(t, L) − ψx(t, 0)u(t, 0)) dt

+

∫ T

0

∫ L

0

ψxx(t, x)u(t, x) dx dt (40)

Using the right sides of equations (39) and (40) to replace the integrals in (38) and
rearranging, we find

∫ L

0

ψ(T, x)u(T, x) dx −
∫ L

0

∫ T

0

u(t, x)(ψt(t, x) + ψxx(t, x)) dt dx

−
∫ T

0

(ψ(t, L)ux(t, L) − ψ(t, 0)ux(t, 0)) dt

+

∫ T

0

(ψx(t, L)u(t, L) − ψx(t, 0)u(t, 0)) dt = 0

Now let us assume that ψ(t, x) satisfies ψt + ψxx = 0, the so-called backwards heat
equation, so that we obtain

∫ T

0

(ψ(t, 0)ux(t, 0) − ψx(t, 0)u(t, 0)) dt +

∫ L

0

ψ(T, x)u(T, x) dx

=

∫ T

0

(ψ(t, L)ux(t, L) − ψx(t, L)u(t, L) dt

which is exactly equation (5).
We now show the derivation of identity (27). First we will start with the equation

(26), multiply both sides by our special function ψ(t, y) and integrate to get

∫ T

0

∫ L

0

ψ(t, y)(rt(t, y)−ryy(t, y)) dy dt =

∫ T

0

∫ L

0

ψ(t, y)(yq′(t)Vy(t, y)−2q(t)Vyy(t, y) dy dt

The only difference between the above equation and (37) is that the right side does not
equal zero. Therefore, doing the same steps as before, we get

∫ T

0

(ψ(t, 0)ry(t, 0)− ψy(t, 0)r(t, 0))dt = −
∫ L

0

φ(T, y)r(T, y)dy

+

∫ T

0

(ψ(t, L)ry(t, L) − ψy(t, L)r(t, L)) dt

+

∫ T

0

∫ L

0

ψ(t, y)(yq′(t)Vy(t, y)− 2q(t)Vyy(t, y)) dy dt

We can simplify this by using the boundary conditions of r(t, y) to obtain

−
∫ T

0

(ψ(t, 0)q(t)g(t) + ψy(t, 0)(a(t)− V (t, 0)) dt =

17



−
∫ L

0

ψ(T, y)r(T, y)dy +

∫ T

0

ψ(t, L)ry(t, L) dt

+

∫ T

0

∫ L

0

ψ(t, y)(yq′(t)Vy(t, y)− 2q(t)Vyy(t, y)) dy dt

which is exactly (27).
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