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Abstract

This paper considers the inverse problem of locating one or more circular inclusions
in a two-dimensional domain using thermal boundary data, specifically, the input heat
flux and measured boundary temperature. The forward problem is governed by the
heat equation. We show how the position and size of such defects can be recovered
using the boundary data of D and various approximations of the solution to the forward
problem. We also consider the stability of the algorithm involved to recover the defects.
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Figure 1: The Forward Problem

1 Introduction

Much research currently exists on recovering the location, size, and orientation of defects
embedded in some domain, by using only data taken on the boundary of the entire region.
In general, such inverse problems do not have an exact solution that we can obtain using
standard methods, and so various approximations must be made. The overall goal is to
develop an algorithm to recover information about the interior of the domain with minimal
computation and maximal accuracy. In this paper we will consider the problem of recovering
perfectly insulating circular inclusions in a given two-dimensional domain using thermal
data. Previous results in related inverse problems, such as the Reciprocity Gap approach (as
described in, e.g., [2]) and the Laplace Transform will be of considerable use in this paper.

2 The Forward Problem

Let D be a bounded region in R2 with boundary ∂D. The time dependent temperature at
any point (x, y) inside of D will be denoted by the function u(x, y, t). For simplicity, we will
assume the diffusivity constant throughout D to be 1. The function u(x, y, t) will thus obey
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the time-dependent heat equation
∂u

∂t
= ∆u (1)

in D. We also assume that a heat flux, g, is applied the external boundary, so that on ∂D
we have

∂u

∂n
= g (2)

where n is a unit outward vector normal to ∂D. We assume that the initial temperature is
zero in all of D.

Now suppose that a circular inclusion B lies inside of D; we assume that B completely
blocks the flow of heat. We still have that (1) holds for all (x, y) ∈ D \ B, but since B is
perfectly-insulating, heat flow across ∂B is completely obstructed. Thus,

∂u

∂n
= 0 on ∂B (3)

The forward problem consists of finding the solution to equations (1)-(3) (with initial
condition u(x, y, 0) = 0) from knowledge of B. However, we are interested in extracting
information about B from knowledge of the input flux g and solution u on ∂D.

3 Transforming the Heat Equation

3.1 Laplace Transform

Our first step in recovering the size and location of the inclusion B is to make use of the
Laplace transform with respect to time t to eliminate that variable from the problem. Not
only is this a great simplification it also allows us an extra degree of freedom.

We denote the Laplace transform of a function f(x, y, t) (with respect to t) by L[f ](x, y, s),
defined for s ≥ 0 as

L[f ](x, y, s) =

∫ ∞

0

e−stf(x, y, t) dt (4)

3.2 Transformed Problem

Applying the Laplace Transform to (1)-(3) and making use of the initial condition u(x, y, 0) =
0 yields a partial differential equation (PDE) of the form

sUs −∆Us = 0 in D \B (5)

∂Us

∂n
= Gs on ∂D (6)

∂Us

∂n
= 0 on ∂B (7)
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where Us(x, y) =
∫∞

0
e−stu(x, y, t) dt and Gs(x, y) =

∫∞
0

e−stg(x, y, t) dt. We assume here
that the flux g decays sufficiently rapidly so that the relevant transforms exists for s ≥ 0.

We will consider recovery of B in both the cases s = 0 and s > 0. For the s = 0 case
this will distill down to what is called the Laplace equation, or equivalently, the steady state
case.

4 The Steady State Case (s = 0)

First, note that in setting s = 0 we put a couple mathematical restriction on the heat
flux g. If s = 0 then we require that g decay rapidly enough so that the integral defining
G0(x, y) converges; moreover, in order that equations (5)-(6) to have a solution, we need∫

∂D
G0(x, y) ds = 0. This forces the condition

∫ ∞

0

∫

∂D

g(x, y, t) ds dt = 0,

that is, that the net heat energy input is zero. We assume this (for the case s = 0 only), and
in fact it will be convenient to also assume that g = 0 for sufficiently large t These conditions
ensure that the temperature u will decay to zero for sufficiently large t.

With this in mind, equations (5)-(7) become simply Laplace’s Equation with Neumann
boundary conditions

∆U0 = 0 in D \B (8)

∂U0

∂n
= G0(x, y) on ∂D (9)

∂U0

∂n
= 0 on ∂B (10)

In the following sections we outline a method to recover the inclusion for the steady state
case. To recover the center of B we will use the Reciprocity Gap functional.

4.1 Reciprocity Gap

The Reciprocity Gap functional will allow us to obtain information about the inclusion B
from the thermal measurements on the boundary ∂D. To derive the Reciprocity Gap we will
apply Green’s second identity to the functions U0 and a “test function” w ∈ C2(D̄). First
recall the following theorem ([4]).

Theorem 1 (Green’s Second Identity) For any pair of functions f and g that are C2(D),
∫ ∫

D

(f∆g − g∆f) dA =

∫

∂D

(
f

∂g

∂n
− g

∂f

∂n

)
ds.
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Let w be a function which is in C2(D̄). Applying Green’s second identity to U0 and w
on the domain D \B yields

∫

D\B
(U0∆w − w∆U0) dA =

∫

∂D∪∂B

(
U0

∂w

∂n
− w

∂U0

∂n

)
ds.

Since both U0 and w are harmonic, the left side above is zero. We split the boundary
integral on the right (note that n points out of B, hence INTO D \B) and obtain

RG(w) :=

∫

∂D

(
U0

∂w

∂n
− w

∂U0

∂n

)
ds =

∫

∂B

U0
∂w

∂n
ds (11)

We use RG(w) as a shorthand for the left side of equation (11). Note that RG(w) can be
computed from knowledge of w, g, and u on ∂D for t > 0. The goal now is to use cleverly
chosen test functions w in equation (11) to extract information about B.

4.2 The Test Functions

Let η be any non-zero complex number. We use the following class of test functions and
their derivatives with respect to η in the s = 0 case:

w =
eη(x+iy)

η
(12)

∂w

∂η
=

x + iy

η
eη(x+iy) (13)

If we parameterize ∂B for θ ∈ [0, 2π) as x = x∗ + R cos(θ), y = y∗ + R sin(θ) (where
(x∗, y∗) is the center of B and R is the radius of B) then we find n =< cos θ, sin θ > and we
compute ∂w

∂n
on ∂B as

∂w

∂n
= ∇w · n
= < eη(x+iy), ieη(x+iy) > · < cos(θ), sin(θ) >

= eiθeη(x+iy)

= eiθeηz∗eηReiθ

(14)

where z∗ = x∗ + iy∗.

4.3 Finding the Center of a Single Inclusion

Let us consider RG(w) as a function of η, and write φ(η) = RG(w) with w chosen according
to equation (12). We can use equation (14) to find that

φ(η) = eηz∗
∫

∂B

eiθeηReiθ

U0(θ) ds (15)
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where we write U0(θ) = U0(x
∗ + R cos(θ), y∗ + R sin(θ)).

Let us assume that R is small, and approximate eηRiθ as 1+O(ηR), where O(ηR) denotes
a quantity bounded in magnitude by A|ηR|, where A is independent of η and R. We then
find that we can approximate

φ(η) ≈ eηz∗
∫

∂B

eiθU0(θ) ds (16)

where the terms that have been dropped are (at least) one order of R higher, so the approx-
imation should improve as R gets closer to zero.

Now, because ∂w
∂η

is also harmonic with w taken from (12), we can similarly compute that

φ′(η) = RG(∂w
∂η

) (this is computable from the boundary data on D). We then have

z∗ =
φ′(η)

φ(η)
=

RG(w)

RG(∂w/∂η)
(17)

for any non-zero complex η. Thus we can recover the center of B. An example is provided
below in section 4.5.

4.4 Finding the Radius of a Single Inclusion for s = 0

The above procedure also recovers (approximately) the value of the integral
∫

∂B
eiθU0(θ) ds.

In the following section we derive a relation between this integral and R, the radius of the
inclusion.

4.4.1 Approximate Solution to (8)-(10)

Now that we know where the center of the inclusion B is, we can assume that our coordinate
system is shifted so that z∗ is at the origin. We will use polar coordinates (r, θ) in what
follows.

Let us write U0 as the sum U0 = u0 + v0, where u0 solves equation (8) on the uncracked
domain D with the Neumann boundary condition ∂u0

∂n
= g on ∂D. The function v0 is a

perturbation of u0 that satisfies the problem

∆v0 = 0 on D \B (18)

∂v0

∂n
= 0 on ∂D (19)

∂v0

∂n
= −∂u0

∂n
:= h(θ) on ∂B (20)

We will write out a solution to the boundary value problem (18)-(20), but without the condi-
tion ∂v0

∂n
= 0 on ∂D. Rather, this condition will be “approximately” satisfied, asymptotically

as R approaches zero. This turns out to be sufficiently accurate for our purposes.
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It’s worth noting that u0 is computable from the input flux g, and so may be treated as
a known quantity.

In what follows we will construct an approximation v to the function v0. Our approxima-
tion v will satisfy (18) and (20), but not (exactly) equation (19). On ∂B we have ∂

∂n
= ∂

∂r
,

so equation (20) can be written
∂v

∂r
= h(θ). (21)

Moreover, in polar coordinates the equation (8) becomes

∂2v

∂r2
+

1

r

∂v

∂r
+

1

r2

∂2v

∂θ2
= 0 (22)

Using separation of variables, we obtain the following two ordinary differential equations,
assuming that v(r, θ) = α(r)β(θ).

β′′ + λβ = 0

α′′ +
1

r
α′ − λα

r2
= 0

We can write v(r, θ) as an infinite series of eigenfunctions αkβk,

v(r, θ) =
∞∑

k=1

r−k (ak cos(kθ) + bk sin(kθ)) (23)

Here we have chosen those eigenfunctions which decay rapidly to zero as r → ∞ (but are
singular at r = 0). This will allow us to obtain the boundary condition (20) exactly, while
(19) will be satisfied to “good” accuracy if R is small.

Since β must be a periodic function from the consistency condition β(θ) = β(θ + 2π), it
follows that λ must be positive. Letting

√
λ = k, we have

β(θ) = c1 cos(kθ) + c2 sin(kθ)

α(r) = c3r
k + c4r

−k

Since any part of the solution with a θ dependence must repeat every 2π radians, we have
that cos(k(θ + 2π)) = cos(kθ). Thus, 2kπ must be a multiple of 2π and so k is an integer.
Furthermore, since we want v to be bounded far away from B, c3 must be zero.

Differentiating equation (23) with respect to r and evaluating at r = R gives (in light of
equation (21))

∂v

∂r
(R, θ) =

∞∑

k=1

−kR−(k+1) (ak sin(kθ) + bk cos(kθ)) = h(θ)
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We can compute the coefficients ak and bk by viewing h as a Fourier series on the interval
0 ≤ θ ≤ 2π, and so find that

−kR−(k+1)ak =
1

π

∫ 2π

0

h(θ) cos(kθ) dθ

−kR−(k+1)bk =
1

π

∫ 2π

0

h(θ) sin(kθ) dθ.

We obtain

ak = −Rk+1

kπ

∫ 2π

0

h(θ) cos(kθ) dθ

bk = −Rk+1

kπ

∫ 2π

0

h(θ) sin(kθ) dθ

We then have an approximate solution v to equations (18)-(20) given by

v(r, θ) = −R

∞∑

k=1

Rk

krk
(a′k cos(kθ) + b′k sin(kθ)) (24)

where

a′k =
1

π

∫ 2π

0

h(θ) cos(kθ) dθ, b′k =
1

π

∫ 2π

0

h(θ) sin(kθ) dθ. (25)

For any fixed r the function v its derivatives decay rapidly to zero at R → 0, so for small R
equation (19) should be satisfied to increasingly good approximation (this part we have not
rigorously proved).

4.4.2 The Relation of RG(w) to R

Recall our definition of φ(η) = RG(w) where w is taken from equation (12). We want to
expand the expression for φ(η) using U0 ≈ u0 + v and a few other suitable approximations
in order to derive a relation between φ(η) and the radius R of B. Recall that

φ(η) := RG(w) =

∫

∂B

∂w

∂n
U0 ds. (26)

If the defect B is relatively small then w and ∇w will be approximately constant over B.
Thus, as in the computations that lead to equation (14) and making use of R ≈ 0 we find,
as before,

∂w

∂n
|∂B ≈ eiθeηz∗ + O(R)
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with ∂B parameterized as z∗ + eiθ. We then have from (26) that

φ(η) =

∫

∂B

∂w

∂n
U0 ds

≈ eηz∗
∫ 2π

0

eiθU0(R, θ)R dθ

= Jeηz∗ (27)

where

J =

∫ 2π

0

eiθU0(R, θ)R dθ (28)

We next use the approximation U0 = u0 + v to find

J ≈
∫ 2π

0

eiθu0(R, θ)R dθ +

∫ 2π

0

eiθv(R, θ)R dθ. (29)

We can then approximate u0(R, θ) on ∂B by a partial Taylor expansion

u0|∂B ≈ u0(z
∗) +∇u0(z

∗)· < R cos θ, R sin θ > +O(R2) (30)

Note that u0(z
∗) is a constant and disappears when integrated against the eiθ factor in (14).

We have then that
∫ 2π

0

eiθu0(R, θ)R dθ =

∫ 2π

0

eiθu0(z
∗)R dθ +

∫ 2π

0

eiθ∇u0(z
∗)· < cos(θ), sin(θ) > R2 dθ + O(R3)

= πR2

(
∂u0

∂x
(z∗) + i

∂u0

∂y
(z∗)

)
+ O(R3) (31)

Similarly, making use of equation (24) for r = R and invoking the orthogonality of the
trig functions yields

∫ 2π

0

eiθv(R, θ)R dθ = −πR2(a′1 + ib′1) (32)

with a′1 and b′1 defined by equations (25). This can be further simplified by noting that
(recall equation (21)) on ∂B, h(θ) = −∂u0

∂r
= −∇u0(R, θ)· < cos θ, sin θ >= −∇u0(z

∗)· <
cos θ, sin θ > +O(R). Then

a′1 = − 1

π

∫ 2π

0

(
∂u0

∂x
(z∗) cos(θ) +

∂u0

∂y
(z∗) sin(θ)

)
cos(θ) dθ + O(R)

= 1 + O(R)
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and similarly b′1 = 1 + O(R). From this and equations (32), (31), and (29) we find

J = 2πR2

(
∂u0

∂x
(z∗) + i

∂u0

∂y
(z∗)

)
+ O(R3)

With equation (27) we have the important result

φ(η) = 2πR2

(
∂u0

∂x
(z∗) + i

∂u0

∂y
(z∗)

)
eηz∗ + O(R3) (33)

After dropping the O(R3) term, we can use equation (33) to estimate the radius of a single
inclusion. First note that we have already shown how to estimate z∗. Also, the function u0

is known. We may thus estimate R by taking the magnitude of both sides and solving as

R ≈
( |φ(η)|

2π|eηz∗||∇u0(z∗)|
)1/2

. (34)

4.5 A Single Inclusion Example

In the following example we take D as the unit disk. The inclusion B is a disk of radius
0.2 centered at (0.2, 0.4) in an xy coordinate system. The input flux used is g(θ, t) =
sin(πt) sin(θ) for 0 < t < 1, then g ≡ 0. The solution to the full heat equation was computed
for 0 < t < 3 using FemLab, then integrated in time to produce the function U0(x, y).

With the choice η = 1 we obtain φ(1) ≈ −0.0812+0.1934i and φ′(1) ≈ −0.0934+0.0059i.
This yields the estimate

z∗ =
−0.0812 + 0.1934i

−0.0934 + 0.0059i
≈ 0.1982 + 0.3998i

which is extremely good. Now the harmonic function u0 corresponding to the “no inclusion”
case is given by u0(x, y) = 2/πy, and so ∇u0 ≡< 0, 2/π >. Equation (34) then yields

R ≈
∣∣∣∣
−0.0812 + 0.1934i

4e0.1982+0.3998i

∣∣∣∣
1/2

≈ 0.2074

which is also very good.

4.6 Identification of Multiple Inclusions

The method we used for multiple inclusions in the s = 0 case is adapted from the method
used in [3], although it was originally used with linear cracks, thus adding the ”crack angle”
to the list of parameters. We use the same test function as defined in equation (12). The
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reciprocity gap functional, however, is now a sum of exponentials in η. Let n be the number
of circular inclusions present. Analysis similar to the single inclusion case yields

φ(η) := RG(w) ≈
n∑

j=1

eηz∗j

∫

∂Bj

eiθu(θ) ds (35)

If we define Aj =
∫

∂Bj
eiθu(θ) ds for each 1 ≤ j ≤ n, we get

φ(η) =
n∑

j=1

Aje
ηz∗j (36)

Very similar computations to those in the single inclusion case show that we can expect

Aj = 2πR2
j

(
∂u0

∂x
(z∗j ) + i

∂u0

∂y
(z∗j )

)
+ O(R3

j ). (37)

Our goal is to identity the centers z∗j , and then each of the jump integrals Aj. Equation (37)
will then allow us to estimate the radii of the inclusions (after dropping the O(R3) term) as

Rj ≈
( |Aj|

2π|∇u0(z∗j )|
)1/2

. (38)

Now, because φ(η) and its derivatives are essentially sums of exponentials multiplied by
various non-η dependent constants, we know that φ(η) satisfies the differential equation

φ(n)(η) + cn−1φ
(n−1)(η) + · · ·+ c1φ

′(η) + c0φ(η) = 0 (39)

where the cj are determined by the characteristic polynomial for the above ODE (39)

p(x) =
n∏

j=1

(x− z∗j ) = xn +
n−1∑
j=0

cjx
j (40)

By exploiting our ability to compute the derivatives of φ(η), we can identify the coeffi-
cients cj. Assuming that we don’t know what n is, we’ll let N be an upper bound on the
number of inclusions that is chosen ahead of time, so N ≥ n. We’ll then choose complex
numbers η1, η2, . . . , ηN and compute φ(j)(ηk) for 0 ≤ j ≤ N , 1 ≤ k ≤ N . Using equation
(39) we obtain a system of N linear equations in N unknowns (the cj for 0 ≤ j ≤ N). The
number of inclusions present is simply the rank of the matrix M where

Mk,j+1 = φ(j)(ηk) for 0 ≤ j ≤ n1 − 1, 1 ≤ k ≤ N. (41)

12



Computed Actual
Radii 0.1090 0.10

0.1532 0.15
0.0506 0.05

Centers (−0.7051,−0.5034) (−0.7,−0.5)
(−0.0004, 0.5006) (0.0, 0.5)
(0.6996,−0.2497) (0.7,−0.25)

Table 1:

We then solve the system determined from (39) and use the cj for 0 ≤ j ≤ n to construct
the characteristic polynomial p(x) of equation (40). The roots of this polynomial can be
numerically determined to yield the values of z∗j . Finally, we can determine Aj for 0 ≤ j ≤ n
by solving the linear system

n∑
j=1

Aje
ηkz∗j = φ(ηk) (42)

where 1 ≤ k ≤ N .

4.7 Multiple Inclusion Example

In this example we again take D as the unit disk. We use three inclusions, with centers
and radii as tabled below. The applied flux and other parameters are the same as the single
inclusion example above.

We use an upper bound N = 5 on the number of blobs, and take the ηk as the Nth roots
of unity. The resulting matrix M has singular values 0.3858, 0.1461, 0.0184, and two singular
values less than 10−5. This indicates the presence of three inclusions.

With this information we now let n = 3 and use η1, η2, η3 as the cube roots of unity, to
solve for the coefficients c0, c1, c2. We find characteristic equation

r3 + (0.0059 + 0.2525i)r2 + (−0.2419− 0.1785i)r +−0.0883 + 0.3098i = 0.

with roots z∗1 ≈ −0.7051 − 0.5034i, z∗2 ≈ 0.6995 − 0.2497i, z∗3 ≈ −0.0004 + 0.5006i, also
tabulated in Table 1. We then use these estimated centers in equation (42) to solve for
the Aj, and so obtain estimates A1 ≈ −0.0004 + 0.0475i, A2 ≈ 0.0001 + 0.0102i, A3 ≈
−0.0006 + 0.0939i. Finally, we use equation (38) to estimate the radius of each inclusion
(with u0(x, y) = 2

π
y as before). The results are tabulated in Table 1. A graphical depiction

of the actual and computed inclusions for this example is found in Figure 2.
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Figure 2: Detection of three inclusions on the unit disk with s = 0 and a flux of g(θ, t) =
sin(θ) sin(πt) for 0 ≤ t ≤ 1 and g = 0 for t > 1. The data was acquired from t = 0 until
t = 3.
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5 The s > 0 Case

For s 6= 0, we have more freedom of choice for the input flux g on the boundary of D.
Specifically, we can use any s such that the magnitude of g does not increase faster Cest for
some constant C. However, we now have a slightly more complicated problem than in the
s = 0 case.

Recall that Us(x, y) defined by equation (4) is the Laplace transform of u(x, y, t), and Us

satisfies the boundary value problem (5)-(7). We will proceed as in the s = 0, by integrating
Us by parts against suitably chosen test functions.

5.1 The Reciprocity Gap Functional

Let w be a C2 test function that satisfies (5) on all of D. As before an application of Green’s
Second Identity yields

RG(w) :=

∫

∂B

Us
∂w

∂n
ds =

∫

∂D

(
Us

∂w

∂n
− w

∂Us

∂n

)
ds (43)

Note that as in the s = 0 case we are able to compute the integral over ∂D, and thus we can
compute RG(w) for any w that satisfies (5).

5.2 Test Function

In what follows the Laplace parameter s is considered fixed. We use a test function w of the
form

w(x, y) = eη1x+η2y (44)

but with η2
1 + η2

2 = s so that w satisfies equation (5). In particular, we take

η1 =
√

s cos α

η2 =
√

s sin α

for some fixed (possibly complex) constant α. With the parameterization x = x∗+R cos(θ), y =
y∗ + R sin(θ) of ∂B (so n =< cos(θ), sin(θ) >) we compute ∂w

∂n
|∂B as

∂w

∂n
|∂B = eη1x+η2y (η1 cos θ + η2 sin θ)

=
√

se
√

s(cos(α)x∗+sin(α)y∗)e
√

sR cos(θ−α) cos(θ − α) (45)
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5.3 Revised Reciprocity Gap

In what follows we will use φ(α) to denote RG(w) with w as chosen above. We then find
that

φ(α) =

∫

∂B

Us
∂w

∂n

=
√

se
√

s(x∗ cos α+y∗ sin α)

∫ 2π

0

Us cos(θ − α)e
√

sR cos(θ−α) ds

where ds = R dθ. Use the 1st order Taylor approximation e
√

sR cos(θ−α) ≈ 1+
√

sR cos(θ−α)
to find

φ(α) ≈ √
se
√

s(x∗ cos α+y∗ sin α)

(∫ 2π

0

Us cos(θ − α) ds +
√

sR

∫ 2π

0

Us cos2(θ − α) ds

)

≈ √
se
√

s(x∗ cos α+y∗ sin α)

(
Jc cos α + JS sin α +

R
√

s

2
J0

)
(46)

where we denote

JC =

∫ 2π

0

Us(R, θ) cos(θ)R dθ, JS =

∫ 2π

0

Us(R, θ) sin(θ)R dθ, J0 =

∫ 2π

0

Us(R, θ)R dθ

In deriving equation (46) we made use of the identity cos2(x) = 1
2

+ 1
2
cos(2x) and we have

dropped the resulting term involving cos(2(θ − α)) for it does not affect φ(α) too much.
Specifically, a Taylor expansion of Us(r, θ) about r = 0 shows that such a term will be of
order R2, and so negligible relative to the terms we’ve kept. For a better approximation,
however, it may be of interest to keep this term and see how great the improvement is.

5.4 Finding The Center of a Single Inclusion

In order to find the center, we evaluate φ(α) as given by equation (46) at five specific values
for α to get five equations in five unknowns x∗, y∗, JS, JC , and J0. We then numerically solve
for x∗ and y∗ using some form of numerical solver. The variables JS, JC , and J0 appear
linearly, so this portion can be done in closed form; the numerical solution is necessary only
to find x∗ and y∗.

For our work we chose to evaluate φ at α = 0, π/4, π/2, π, and −π/2. The equations are
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thus

φ(0) =
√

se
√

sx∗
(

JC +
R
√

s

2
J0

)

φ(
π

2
) =

√
se
√

sy∗
(

JS +
R
√

s

2
J0

)

φ(π) =
√

se−
√

sx∗
(
−JC +

R
√

s

2
J0

)

φ(−π

2
) =

√
se−

√
sy∗

(
−JS +

R
√

s

2
J0

)

φ(
π

4
) =

√
s

2
e
√

s
2
(x∗+y∗) (JC + JS)

5.4.1 Numerical Example

As an example, let us take D as the unit disk, B as an inclusion with center (0.2, 0.4) of
radius 0.2. The flux is as in previous examples, g(θ, t) = sin(θ) sin(πt) for 0 < t < 1,
data taken on ∂D for times 0 < t < 3. We use a Laplace parameter of s = 2. The
data was generated in FemLab. We find estimates x∗ = 0.193, y∗ = 0.400, as well as
J0 = 0.01705, JC = 0.00193, JS = 0.04182.

As shown in the next section, the radius of the defect can be determined from J0.

5.5 Finding the Radius of a Single Inclusion

5.5.1 The Approximate Solution to (5)-(7) for s > 0

We proceed in a manner very similar to the s = 0 case. The main difference is that the
expansion of Us via separation of variables now involves Bessel functions, rather than trig
functions.

Without loss of generality, once we know where the center is we can shift our coordinate
system such that x∗ = 0 and y∗ = 0. We use polar coordinates (r, θ) when convenient. We
use the same method as before to solve (5)-(7), first letting Us(r, θ) = u0 + v0, where u0 is a
solution to (5) on D. The function v0 must satisfy

sv0 −∆v0 = 0 on D \B (47)

∂v0

∂n
= 0 on ∂D (48)

∂v0

∂n
= −∂u0

∂n
:= h(θ) on ∂B (49)
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We’ll use separation of variables and let v0(r, θ) = R(r)T (θ). From (5) we get

sR(r)T (θ)−
[
R′′T +

1

r
R′T +

1

r2
RT ′′

]
= 0

A standard separation of variables argument show that we need

r2s− r2R′′

R
− rR′

R
=

T ′′

T
= −λ2

for some constant λ. We end up with the following two ordinary differential equations

T ′′ + λ2T = 0

r2R′′ + rR′ −R(r2s + λ2) = 0

The solutions are

T (θ) = c1 cos(λθ) + c2 sin(λθ)

R(r) = c3Kλ(
√

sr) + c4Iλ(
√

sr)

where Iν(z) and Kν(z) are the modified Bessel functions of order ν of the first and second
kind, respectively.

Listed below are some useful relationships where Jν(z) and Yν(z) are Bessel functions of
order ν of the first and second kind (see [1])

Iν(z) = e
νiπ
2 Jν(ze

−πi
2 )

Kv(z) = −πi

2
e−

νπi
2 H(2)

v (ze−
πi
2 )

Iν−1(z) + Iν+1(z) = 2I ′ν(z)

Kν−1(z) + Kν+1(z) = −2K ′
v(z)

Kν−1(z)−Kν+1(z) = −2ν

z
Kν(z)

K ′
v(z) = −Kν−1(z) + Kν+1(z)

2
ν

z
Kν(z)−Kν+1(z) = K ′

v(z)

If we ignore the boundary condition (48) on ∂D as before and assume that D is much
larger than B (so that D ≈ R2), then we can take c4 = 0 since Iλ(r) →∞ as r →∞, while
Kλ(r) decays rapidly (analogous to rk versus r−k). Also note that due to the continuous
wrap-around condition on T , λ must be an integer which we will denote by n.

Let us use v(r, θ) to denote the resulting approximation to v0. We can now write v(r, θ)
as:
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v(r, θ) =
∞∑

n=0

Kn(
√

sr) (an cos(nθ) + bn sin(nθ))

and also
∂Kn(

√
sr)

∂r
=

nKn(
√

sr)

r
−√sKn+1(

√
sr)

Computing the normal derivative ∂v
∂r

and evaluating at r = R in order to apply the Neumann
data yields

vr(R, θ) =
∞∑

n=0

(
nKn(

√
sR)

R
−√sKn+1(

√
sR)

)
(an cos(nθ) + bn sin(nθ)) = h(θ).

We can compute the coefficients an and bn by viewing vr(R, θ) as a Fourier series expansion
of h(θ). We obtain

(
nKn(

√
sR)

R
−√sKn+1(

√
sR)

)
an =

1

π

∫ 2π

0

h(θ) cos(nθ) dθ

(
nKn(

√
sR)

R
−√sKn+1(

√
sR)

)
bn =

1

π

∫ 2π

0

h(θ) sin(nθ) dθ

After simplification we have

an =
1

π

1
nKn(

√
sR)

R
−√sKn+1(

√
sR)

∫ 2π

0

h(θ) cos(nθ) dθ

bn =
1

π

1
nKn(

√
sR)

R
−√sKn+1(

√
sR)

∫ 2π

0

h(θ) sin(nθ) dθ

For this computation, we used a slightly less accurate approximation of φ(α) as listed
below. Specifically, we used the zeroth order Taylor approximation e

√
sR cos(θ−α) ≈ 1. In this

case we find

φ(α) ≈ √
se
√

s(x∗ cos α+y∗ sin α)

∫ 2π

0

Us cos(θ − α) ds

=
√

se
√

s(x∗ cos α+y∗ sin α) (JC cos α + JS sin α)

with JC and JS as defined above. We now substitute Us = u0 + v, and define the quantity
J as

J =
√

s(JC cos α + JS sin α) (50)

so that
φ(α) ≈ Je

√
s(x∗ cos α+y∗ sin α). (51)
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Note that after we know the center (x∗, y∗), we can recover J .
In expanded form, we have (recall η1 =

√
s cos(α), η2 =

√
s sin(α))

J =

∫

∂B

[η1 cos θ + η2 sin θ] u ds =

∫ 2π

0

[η1 cos θ + η2 sin θ] (u0(R, θ) + v(R, θ))R dθ (52)

The portion of (52) involving u0 can be approximated in the same way as the s = 0 case. To
restate, u0|∂B = u0(z

∗) +∇u0(z
∗)· < R cos(θ), R sin(θ) > +O(R2). This is just a first order

Taylor series approximation of u0 about the point z∗, which is in our case, the origin.
To analyze the second part of (52) we compute by using the following small-r Bessel

function approximations (again, see [1])

Km(r) ≈
{

log r m = 0
1
2
(m− 1)!(1

2
r)−m m 6= 0

To lowest order we need only consider K1 and K2 (terms involving other Kn will drop out
below, due to orthogonality considerations), which are specifically

K1(r) ≈ 1

2

2

r
=

1

r

K2(r) ≈ 1

2
(
1

2
r)−2 =

1

2

4

r2
=

2

r2
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A bit of computation and approximation then shows that

J ≈
∫ 2π

0

[η1 cos θ + η2 sin θ]

(
u0(z

∗) +
∂u0

∂x
(z∗)R cos θ +

∂u0

∂y
(z∗)R sin θ

)
R dθ

+

∫ 2π

0

[η1 cos θ + η2 sin θ] v(R, θ)R dθ

=
∂u0

∂x
(z∗)R2η1

∫ 2π

0

cos2 θ dθ +
∂u0

∂y
(z∗)R2η2

∫ 2π

0

sin2 θ dθ

+

∫ 2π

0

[η1 cos θ + η2 sin θ] v(R, θ)R dθ

=
∂u0

∂x
(z∗)R2η1π +

∂u0

∂y
(z∗)R2η2π +

∫ 2π

0

[η1 cos θ + η2 sin θ] v(R, θ)R dθ

= R2π∇u0(z
∗)· < η1, η2 > +R

∫ 2π

0

[η1 cos θ + η2 sin θ]
∞∑

n=0

Kn(
√

sR) [an cos(nθ) + bn sin(nθ)] dθ

= R2π∇u0(z
∗)· < η1, η2 > +Rη1

∫ 2π

0

K1(
√

sR)a1 cos2 θ dθ + Rη2

∫ 2π

0

K1(
√

sR)b1 sin2 θ dθ

≈ R2π∇u0(z
∗)· < η1, iη2 > +Rη1π

1√
sR

a1 + Rπη2
1√
sR

b1

= R2π∇u0(z
∗)· < η1, iη2 >

+
π√
s

(
η1

∫ 2π

0

h(θ) cos(θ) dθ + η2

∫ 2π

0

h(θ) sin(θ) dθ

)
1

π

1
K1(

√
sR)

R
−√sK2(

√
sR)

≈ R2π∇u0(z
∗)· < η1, iη2 > +

π√
s

(
η1

∫ 2π

0

h(θ) cos(θ) dθ + η2

∫ 2π

0

h(θ) sin(θ) dθ

)(
−
√

sR2

π

)

= R2π∇u0(z
∗)· < η1, iη2 > −R2

(
η1

∫ 2π

0

h(θ) cos(θ) dθ + η2

∫ 2π

0

h(θ) sin(θ) dθ

)

We now use an additional approximation that h(θ) = −∂u0

∂r
= −∇u0· < cos(θ), sin(θ) >≈

−∇u0(z
∗)· < cos(θ), sin(θ) >. Applying this yields

J = R2π∇u0(z
∗)· < η1, η2 > −R2η1

∫ 2π

0

[
−∂u0

∂x
(z∗) cos θ − ∂u0

∂y
(z∗) sin θ

]
cos θ dθ

− R2η2

∫ 2π

0

[
−∂u0

∂x
(z∗) cos θ − ∂u0

∂y
(z∗) sin θ

]
sin(θ) dθ

= R2π∇u0(z
∗)· < η1, η2 > +R2η1

∂u0

∂x
(z∗)π + R2η2

∂u0

∂y
(z∗)π

= 2πR2∇u0(z
∗)· < η1, η2 >

= 2π
√

sR2∇u0(z
∗)· < cos(α), sin(α) > (53)
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Computed Actual
Radius 0.197 0.20
Center (0.201888, 0.401673) (0.20, 0.40)

Table 2:

5.6 Example: Find the Radius

For this computation we use the same parameters as in section 5.4.1, including Laplace
parameter s = 2. We have already identified the center. We find from the same data (using
α = π/2) that J ≈ 0.04182. We also need to know u0. In this case an expansion in Bessel
functions in polar coordinates about the origin shows that

u0(r, θ) ≈ 0.1955
I1(r

√
2)

r
.

Finally, we use equation (53) to find estimate R ≈ 0.197, remarkably accurate.
Results are listed in Table 2.

6 Conclusion and Future Work

We have used the Laplace Transform in order to eliminate t from the time dependent problem
where some collection of circular inclusions, which completely block heat flow, are contained
in some two-dimensional region D. Yet to be discovered is a method for extracting the radii
and centers of multiple inclusions in the s nonzero case. Ideally, there is a nice way to solve
this problem, although with just one inclusion we had to resort to a rather crude approach -
solving a system of equations numerically - though the system contained only two equations
and no solves of the forward problem are needed.

Beyond the multiple inclusion, s nonzero case, it would be interesting to try and modify
our model so that partial heat flow can occur over the boundary of each inclusion. Thus, we
would have a boundary condition of the form ∂u

∂n
= k[u] on ∂B.

Finally, it would be prudent to look into the 3-dimensional analog of our problem - that is,
some arbitrary solid blob with a spherical hole inside with neither radius nor center known.

22



References

[1] Abramowitz, M., and Stegun, I., Handbook of Mathematical Functions, Dover, 1965.

[2] Andrieux, S., and Ben Abda, A., Identification de fissures planes par une donne de bord
unique; un procd direct de localisation et didentification, C.R. Acad. Sci., Paris I, 1992,
315, pp. 1323-1328.

[3] Bryan, K., Krieger, R., Trainor, N., Imaging of Multiple Linear Cracaks Using Impedance
Data.

[4] McQuarrie, Donald A., Mathematical Methods for Scientists and Engineers.

[5] Christian N., Johnson M., Non-Destructive Testing of Thermal Resistances for a Single
Inclusion in a 2-Dimensional Domain.

[6] Bryan, K., An Inverse Problem in Non-Destructive Testing: The ”Reciprocity Gap”
Approach.

23


