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Abstract

This paper develops and algorithm for finding one or more non-
insulated, pair-wise disjoint, linear cracks in a two-dimensional region
using boundary measurements.
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1 Introduction

In the field of non-destructive testing of materials, the ability to view the
inside of an object based solely on boundary measurements proves invaluable.
This paper is concerned with the identification of one or more cracks inside
a homogeneous object. The technique we use is impedance or steady-state
thermal imaging. In [4], Alessandrini and Diaz offer uniqueness results for the
identification of n cracks inside a two-dimensional region, and in [1] Trainor
and Krieger employed the reciprocity gap formula to identify linear, perfectly
insulating cracks. In [3], Ogborne and Vellela deal with the case of a single
partially conducting linear crack and examine the nature of the ill-posedness
of its associated inverse problem. In this paper, we expand the ideas of [1] and
[3] to find a method to locate a single partially conductive linear crack, and
we then move on to develop an algorithm for finding multiple non-insulated
cracks.

2 The Forward Problem

Let Ω be a bounded region in R2 with boundary ∂Ω; we will use coordinates
x = (x1, x2). Suppose that within Ω there exist n pairwise disjoint line
segment “cracks”. Let σi denote the ith crack, pi the midpoint of σi, |σi| the
length of σi, and θi the angle between the line containing σi and the x-axis,
where −π

2
< θi ≤ π

2
. We use Σ = ∪n

i=1σi to denote the collection of cracks.
We assume in general that |σi| ¿ min {|x− pi|;x ∈ ∂Ω}.

Suppose we apply a steady-state heat flux g to the boundary of ∂Ω. Let
u(x1, x2) be the resulting steady-state temperature at any point inside of Ω.
After appropriate scaling, we suppose that u satisfies the equation

∂2u

∂x2
1

+
∂2u

∂x2
2

= 0 on Ω\Σ (1)

with the Neumann boundary condition

∂u

∂n
= g on ∂Ω, (2)

where n is the unit outward normal vector to ∂Ω.
We also need boundary conditions on the cracks. For all i, we will denote

one side of σi as the ”−” side, and the other side as the ”+” side and choose a
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unit normal vector nσi
that points from the − to the + side. The superscript

“+” will denote the limiting value of a quantity from the + side of σi; likewise,
the superscript “−” will denote the limiting value from the − side of σi.

To model the fact that heat may flow over the crack, but with some
resistance, we assume

∂u

∂nσi

= k[u] on σi, (3)

for all i, where [u] = u+− u− (in physical terms [u] is the temperature jump
over the crack) and k is a constant. Note that (3) is assumed to hold on both
sides of σi. Equation (3) models the crack as a kind of “contact resistance”,
with heat flowing over σi at a rate proportional to [u]. We also add the
normalization

∫
∂Ω

u ds = 0, which ensures a unique solution to the problem

(1)-(3).
The solution u to our forward problem will be smooth away from the

cracks (since u is harmonic there), but generally will have a jump disconti-
nuity across each crack. Standard elliptic regularity theory shows that [u] is
continuous along any given crack and tapers to zero at the crack endpoints.

Given our conditions (1)-(3), the forward problem consists of determining
u(x) for each x ∈ Ω \ Σ, given the input flux g and knowledge of the crack
locations Σ. However, we are interested in the inverse problem: We consider
the cracks σi to be unknown and we are to recover their locations given that
(1)-(3) hold and additional knowledge, namely measurements of u on ∂Ω;
note that we consider the constant k as known. Physically, this corresponds
to applying a known heat flux g to the object Ω, measuring the steady-state
temperature response on the outer boundary, and then inferring the location
of any internal crack(s), given that we know the constitutive law that governs
heat flow over the cracks.

3 Locating a Single Crack

In this section we consider the problem of locating a single crack, and proceed
in three steps: First, we find the line on which the crack lies; next, we
determine where on this line the center of the crack lies; finally, we determine
the length of the crack.
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3.1 Finding the Crack Line

Suppose that there exist no cracks in Ω. Let

Γ(x1, x2) =
1

4π
ln(x2

1 + x2
2)

be the fundamental solution for the steady-state heat equation in two dimen-
sions. Then by Green’s Third Identity we have

1

2
u(x) +

∫

∂Ω

u(y)
∂Γ

∂ny

(y − x) dxy −
∫

∂Ω

Γ(y − x)
∂u

∂ny

(y) dsy = 0 (4)

where y = (y1, y2) and dsy refers to integration with respect to arc length on
∂Ω in the y variable. Let the left side of (4) be denoted by α(x). Note that
we can compute α for any x ∈ ∂Ω because everything in α is evaluated from
the boundary data.

Now suppose there are n perfectly insulating cracks inside Ω. Then as
shown in [1] (which applies the Divergence Theorem) we obtain

α(x) =
n∑

i=1

∫

σi

∂Γ

∂nσi

(x− y)[u](y) dsy. (5)

We note here, however, that precisely the same argument applies when we
have the boundary condition ∂u

∂n
= k[u] for k ≥ 0; all that’s really needed

is a boundary condition which induces a jump over the cracks. As in the
perfectly insulating case, our goal is to use the value of α(x) for each x ∈ ∂Ω
to determine the cracks.

For the rest of this section we will assume n = 1 and neglect the subscript
on σ. In this case we have

α(x) =

∫

σ

∂Γ

∂nσ

(x− y)[u](y) dsy. (6)

We parameterize the crack σ as

{
(y1, y2) : y1 = p1 + t cos θ, y2 = p2 + t sin θ | − L

2
≤ t ≤ L

2

}
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in which p = (p1, p2) denotes the crack center, θ the crack angle, and L the
crack length. In [1], they were able to calculate ∂Γ

∂nσ
(x− y) as

∂Γ

∂nσ

(x− y) =
1

2π

(x− p,nσ)

(x− p,x− p)− 2t(x− p, σ̂) + t2
,

where σ̂ = 〈cos θ, sin θ〉 and −L
2
≤ t ≤ L

2
, and we use the notation (x,y) to

denote the usual inner product on R2. Inserting this into equation (6) shows
that α(x) = 0 exactly when (x − p,nσ) = 0, so α(x) equals 0 when x − p
is perpendicular to nσ. Therefore, there exist at least two points, a,b ∈ ∂Ω
such that α(a) = α(b) = 0. It follows that σ is contained in the line from
a to b. Therefore we know the line on which the crack lies and can find the
angle. In [1], they were dealing with perfectly insulated cracks, but applying
the results of [3] to our situation reveals that the same method works for
partially conducting cracks.

3.2 Finding the Midpoint

To show how to obtain the midpoint of our crack, we again adapt methods
developed in [1]. If we assume that the length of the crack is much less than
the distance from our midpoint p to any x ∈ ∂Ω, then we can approximate
∂Γ
∂ny

by

∂Γ

∂ny

≈ 1

2π

(x− p,nσ)

(x− p,x− p)
(7)

(since |t| is small, so the corresponding terms in ∂Γ
∂ny

are negligible). Thus we

can approximate (6) by

α(x) ≈ 1

2π

(x− p,nσ)

(x− p,x− p)

∫

σ

[u](y)dsy =
1

2π
J

(x− p,nσ)

(x− p,x− p)
, (8)

where J =
∫
σ

[u](y)dsy.

We now note that the jump integral J =
∫
σ

[u](y)dsy can be computed

very easily, as shown in [2] and [3], once the crack line (in particular, the
angle θ) is known. Let φ(x, y) = − sin(θ)x + cos(θ)y, where θ is the angle of
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the crack with respect to the x-axis (which we found in Section 3.1). Then
we have from the reciprocity gap formula that

∫

σ

[u](y)dsy =

∫

∂Ω

(
u

∂φ

∂n
− φ

∂u

∂n

)
ds (9)

Since the right-hand side of this equation is computable from boundary data,
we can find J .

Since it was shown in [3] that J is ”generically” non-zero, we can say that

α(x)

J
≈ 1

2π

(x− p,nσ)

(x− p,x− p)
(10)

for any x ∈ ∂Ω. When x− p is parallel to nσ, we have (x− p,nσ) = |x− p|,
thus turning equation (10) into α(x)

J
≈ 1

2π
(x−p,nσ)

(x−p,x−p)
= 1

2π
1

|x−p| . Note that if
x− p were antiparallel to nσ, then the quantity would be negated.

Suppose x1,x2 ∈ ∂Ω such that the line (x1,x2) is perpendicular to the
line (a,b), which we found while recovering the crack angle. Also suppose
that the vector x1 − p is parallel to nσ, which implies that x2 − p is antipar-
allel to nσ. Then (10) and the triangle inequality imply that

|x1 − x2| ≤ |x1 − p|+ |p− x2| = 1

2π

(
J

α(x1)
− J

α(x2)

)
, (11)

where the equality holds only when p ∈ (x1,x2). Therefore we can find p
by taking pairs of points perpendicular to the (now known) line containing σ
and choosing the specific pair, (x1,x2), for which the equality holds in (11)
as in Figure 1. We finally get p as

p = (x1,x2) ∩ (a,b). (12)

We want to mention that because equation (5) always holds, we do not
have to make the assumption that ∂u

∂nσ
= k[u], but instead we could have

∂u

∂nσi

= F ([u])

for any function F (at least, any F for which the boundary value problem is
solvable).
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Figure 1: Method for locating the midpoint of the crack.

3.3 Finding the Length

In the last section we prove the following Theorem (or at least a special case
of it), an extension of Theorem 1 in Section 5 of [1].

Theorem 3.1 Let σ be a linear crack with center p, at angle θ, of length L.
Let u be the solution to the boundary value problem (1)-(3). Then

∫

σ

[u] ds =
π/4

1 + 8kL
3π

(∇u0(p) · n)L2 + O(L3) (13)

where O(L3) denotes a quantity bounded in magnitude by CL3 for all L suf-
ficiently close to zero, with C independent of L (but C may depend on p, θ,
and the input flux g).

In the case k = 0 this becomes precisely Theorem 1 in Section 5 of [1].
Theorem 3.1 also holds for the multiple crack case.

The technique for finding the length consists in dropping the O(L3) term
in equation (13), computing J =

∫
σ
[u] ds from the boundary data, and then

solving for L in equation (13) as

L =

8
3π

Jk +
√

(Jk 8
3π

)2 + Jπ(n · ∇u0(p)

π
2
(n · ∇u0(p))

(14)
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where u0 is the harmonic function on Ω with the same Neumann boundary
data as u (which we can compute from the Neumann data g). Note that at
the stage in which we are solving for L, we have already computed the crack
line, hence we know n, and we have also computed p, so everything on the
right in equation (14) is indeed known.

3.4 Example

We will now provide a specific example in which we locate a single crack.
For the sake of simplicity we will take our domain Ω to be the unit circle in
R2 with the conditions described in Section 2. We specify the heat flux on
∂Ω to be g = sin(t) and parameterize ∂Ω as (cos(t), sin(t)), for 0 ≤ t < 2π.
We can write u(x) = u(t) where x = (cos(t), sin(t)). We also have that the
harmonic solution over Ω is

u0(x, y) = y,

∇u0 = 〈0, 1〉,∫

∂Ω

u0(y)
∂Γ

∂ny

(y − x) dsy = 0, and

∫

σ

Γ(x− y)
∂u0

∂n
(y) dsy =

1

2
sin t

for the point x = (cos t, sin t). Thus in this case we obtain the simple expres-
sion

α(x) =
1

2
(u(t)− sin t)

for x ∈ ∂Ω and 0 ≤ t < 2π.
In the following example, we used a C program to generate the boundary

data, u(x), using a boundary integral approach for solving the boundary
value problem. The program generates data for n equally spaced points on
∂Ω.

Now we are ready to locate a single crack in Ω using the methods described
in the previous sections We calculated boundary data for a unit circle with a
crack described by a left endpoint at (−0.1, 0.8), length |σ| = 0.4, and angle
θ = −0.1. We also fixed k = 10.
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We can compute α(t) for each of our points on the boundary, and can see
that α(t1) = α(t2) = 0 for t1 ≈ 0.802899 and t2 ≈ 2.137376. Therefore a line
containing σ passes through the points

a = (cos(0.802899), sin(0.802899)) = (0.694624, 0.709373), and

b = (cos(2.137376), sin(2.137376)) = (−0.536749, 0.843742)

We now know the line containing σ, and can therefore compute the crack
angle θ by taking the arctangent of the slope of this line. In this example, we
calculate a value of θ ≈ −0.100659 (which is very close to the actual value,
θ = −0.1).

We can now use equation (9) to determine the value of the jump integral,
which we will then use to find both the midpoint of the crack, and the crack
length. First we will compute the integral over the m points on ∂Ω,

∫

σ

[u](y) dsy ≈
m∑

i=1

ui sin

(
2π(i− 1)

m
− θ

)

−
2π∫

0

sin φ (− sin θ cos φ + cos θ sin φ) dφ

= 0.029935

so that J =
∫
σ

[u](y) dsy ≈ 0.029935.

We can use this to help us locate the midpoint of the crack. Just as in [1],
we test pairs of points on ∂Ω that define lines perpendicular to the crack line
(a,b) that we just computed. To determine which points will help describe
the midpoint of σ, we will use the test function

T (x1,x2) =
1

2π

(
J

α(x1)
− J

α(x2)

)
− |x1 − x2|,

from [1]. The roots of this function, called x1 and x2, will define a line
through p, the midpoint of σ. Since p = (x1,x2)∩ (a,b), our example gives
us

p ≈ (0.041996, 0.785288)

After finding the length we can calculate the location of the left endpoint of
the calculated crack and compare it to our initial value. This will come out
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to be at (−0.165495, 0.806242). This is very near the true value (−0.1, 0.8).
Now having found both the angle and the midpoint of the crack, all we have
left is to determine the crack’s length.

We have computed J , we can compute nσ · ∇u0(p) (since we know nσ

and p), and we know k. Using equation (14) for |σ| gives us

|σ| ≈ 0.417033.

10.50-0.5-1

1

0.5

0

-0.5

-1

Figure 2: Reconstruction of a single crack where k = 10.

The algorithm we used gave us good results. Our true crack (with k = 10)
was located with a left endpoint at (−0.1, 0.8) with length |σ| = 0.4 and angle
θ = −0.1. Our calculated crack had a left endpoint (-0.165465 0.806242),
θ ≈ −0.100659, and |σ| ≈ 0.417033. As you can see from Figure 2, the true
and computed cracks overlap almost exactly.

4 Locating Multiple Cracks

Finding multiple cracks poses a much greater challenge than locating a single
one. We could not find any analytical way to solve the inverse problem for n
cracks, and had to rely on an approximate numerical method to locate them,
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based on a least-squares approach. If we assume that the cracks are small
and well-separated, then equation (5) becomes

α(x) ≈ 1

2π

n∑
i=1

Ji
(x− pi,nσi

)

(x− pi,x− pi)
(15)

We will write α(x, {pi, θi, Ji}) to show the dependence of α on these pa-
rameters and use α∗(x) to denote the ”true” value of α derived from measured
data from a set of ”true” cracks. Define

F (x) = α(x, {pi, θi, Ji})− α∗(x)

for x ∈ ∂Ω.
Since we could not find an analytical solution to finding multiple cracks,

we will instead use a least-squares method to locate them. Specifically, we
will make an initial guess at the parameters of each crack, then use measured
data to compute α∗(x) and our guesses to compute α(x). Once the initial
guess has been made, the Levenberg-Marquardt Method is used to tweak the

parameters until
m∑

j=1

F (xj)
2 is minimized (xj denotes the jth point of a list

of m data points on ∂Ω).
We would like for F (xj) to be zero for each xj ∈ ∂Ω when the correct

parameters have been found for each crack. Usually this doesn’t happen, but
we do end up with a nice approximation for pi, θi, and Ji. Because of the
jump formula 14, we can approximate each Li. We should note that since our
actual cracks are assumed to be well separated, the initial guess should have
its cracks well separated also. We should also mention that this method has
two substantial drawbacks: because it is purely numerical we cannot give an
exact solution, and using this method pre-supposes that we know the number
of cracks we are looking for.

It’s worth noting that although we are using a least-squares approach,
because we work with the function α(x) and use the analytic approximation
in equation (15), we do NOT have to solve any forward problems. The
computation of the objective function is very quick and easy.

4.1 Multiple Crack Examples

We chose the locations for two cracks and generated data for u on ∂Ω, just as
in the single crack example. For simplicity, we let both cracks have the same
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constant k. All other conditions are identical to those of the single crack case.
We use a C program that employs the Levenberg-Marquardt algorithm, our
least-squares approach to approximating the crack locations. At this point
we make an initial estimate for the endpoint of each crack (we must know
the number of cracks for this to work), the value of each jump integral, and
the crack angles. If we have no idea where the cracks are located, we can
make an arbitrary initial estimate. However, it may take a few attempts to
find a guess.

First we let k = 10, and choose two cracks in Ω. We make initial estimates
for the location of the cracks, and in this case the code gave us results after
only 10 iterations. As you can see from Figure 3, the reconstruction is nearly
perfect.

1

0

0.5

-0.5

10.5-1 0

-1

-0.5

Figure 3: Reconstruction of two linear cracks with constant k = 10.

The algorithm becomes less stable as n (the number of cracks) increases.
When we had three cracks (each with k = 10) in Ω, it took 50 iterations for
the program to converge in one case. The resulting reconstruction, as shown
in Figure 4, is not quite as accurate as with fewer cracks, but it is still a good
approximation.
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1

0

0.5

0.5-0.5 10-1

-0.5

-1

Figure 4: Reconstruction of three linear cracks with constant k = 10.

5 Finding Crack Length

In this section we provide a proof of a special case of Theorem 3.1. We
suppose that Ω contains only a single line segment crack σ. Let u satisfy
∆u = 0 in Ω\σ. We seek a function v, harmonic on Ω\σ, such that u ≈ u0+v,
to good approximation. In this case we’d have ∂u0

∂n
+ ∂v

∂n
= k[u0 + v] on σ,

leading to the requirement

∂v

∂n
(x)− k[v](x) = −∂u0

∂n
(x),

at any point x on the crack.
We may rescale the coordinate system so that σ = [0, 1] on the x1-axis. If

σ is short we may approximate −∂u0

∂n
(x1) ≈ −∂u0

∂n
(p) where p is the midpoint

of σ. Our boundary conditions are ∂u
∂n

= k[u] on σ (note that n = 〈0, 1〉 on
σ), ∂u

∂n
= g on ∂Ω. Let u0 be the harmonic function on Ω with the same

Neumann data g (u0 is the solution on the ”uncracked” domain). We will
prove Theorem 3.1 in the special case that ∂u0

∂y
is constant on σ, and in fact

equal to 1. A slightly more difficult argument, similar to that in [1], shows
how to deal with the case in which ∂u0

∂y
is not constant.
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First note that we can write v ≈ ∂u0

∂n
(p)w where w satisfies

∂w

∂y
(x, 0)− k[w](x) = −1 (16)

for 0 < x < 1, since [u0] = 0. We will construct a function w which satisfies
equation (16) and is harmonic on R2 \ [0, 1]. However, the corresponding
approximation u0 + v to u will not satisfy the boundary condition on ∂Ω—it
will have slightly incorrect Neumann boundary data. However, the discrep-
ancy can be shown to be small enough that [u] = [v] + O(L3), as shown in
[1]. Thus the approximation will be sufficient for the purposes of proving
Theorem 3.1.

Let us define the function φ(z) = 1− 2z + 2z
√

1− 1
z
. It’s easy to verify

that φ is analytic on C \ [0, 1]. Let vj(x, y) = Im(φj+1(x + iy)) for j ≥ 0; the
function vj is harmonic on R2 \ [0, 1] and from [3] we know that

[vj](x) = 4(−1)jUj(2x− 1)
√

x− x2 (17)

∂vj

∂y
(x, 0) = 2(j + 1)(−1)j+1Uj(2x− 1) (18)

for x ∈ (0, 1), where Uj is the jth Chebyshev polynomial of the second kind,
and once again we use the bracket notation [vj] to denote the jump across
the crack. We will try to construct a solution to equation (16) which decays
rapidly away from σ, in the form

v(x, y) =
∞∑

j=0

cjvj(x, y)

for appropriate constants cj, j ≥ 0.
Equations (16)-(18) lead us to

2
∞∑

j=0

(−1)j+1cj

(
(j + 1)Uj(2x− 1) + 2kUk(2x− 1)

√
x− x2

)
= −1. (19)

We can multiply equation (19) by Um(2x − 1)
√

x− x2, for m ≥ 0, and
integrate over (0, 1) to obtain

π

4
(−1)m+1(m + 1)cm + 4k

∞∑
j=0

(−1)j+1cj

1∫

0

Uj(2x− 1)Um(2x− 1)(x− x2) dx
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= −
1∫

0

Um(2x− 1)
√

x− x2 dx,

an infinite system of equations in cj, j ≥ 0. This can be written as

π

4
(−1)m+1(m + 1)cm + 4k

∞∑
j=0

(−1)j+1Bjmcj = am (20)

for each m ≥ 0, where Bjm =
1∫
0

Uj(2x− 1)Um(2x− 1)(x− x2) dx for j + m

even and Bjm = 0 for j + m odd, and a0 = −π
8
, am = 0 for m ≥ 1.

More generally, consider equation (20) for arbitrary right side am. We
can really write the whole thing as

π

4
(m + 1)cm + 4k

∞∑
j=0

Bjmcj = (−1)m+1am (21)

using the fact that Bjm = 0 if j + m is odd, as we show below. Indeed, we
can work out an explicit formula for the Bjm, as follows. We have to look at

Bjm =

1∫

0

Uj(2x− 1)Um(2x− 1)(x− x2) dx.

Using a change of variables and the fact that Uj(cos t) = sin ((j+1)t)
sin t

(which is
just a property of the Chebyshev polynomials) we get

Bjm =
1

8

π∫

0

sin ((j + 1)t) sin ((m + 1)t) sin t dt. (22)

If we work the integral, we find that if j +m is odd we get zero, and if j +m
is even we get

Bjm =
(j + 1)(m + 1)

2(j + m + 1)(j + m + 3)(j −m + 1)(m− j + 1)
.

The formula for Bjm when j + m is even is a straightforward consequence of
standard integration techniques.
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Note it is easy to see Bjm < 0 if j 6= m. If j = m we get

Bmm =
(m + 1)2

2(2m + 1)(2m + 3)
.

Finally, let us divide through equation (21) by π
4
(m + 1) to obtain

cm +
16k

π(m + 1)

∞∑
j=0

Bjmcj = (−1)m+1 4

π(m + 1)
am := ãm (23)

The system (23) can thus be written as Ac = ã, where c = (c0, c1, . . .).
We will consider c and ã to be sequences in the space `∞ and A as the linear
operator from `∞ to `∞ defined by

(Ac)m =
∞∑

j=1

Amjcj

where Amj = δm
j + 16k

π(m+1)
Bjm (here δj

m is the Kronecker delta). We will prove
unique solvability of Ac = ã for any ã ∈ `∞ by showing that A is diagonally
dominant and using a Neumann series inversion. We will then use this to
show that our original problem (with a0 = −π/8) is solvable.

For diagonal dominance we need to show that
∣∣∣ 16k
π(m+1)

∑
j 6=m Bjm

∣∣∣ <

c
(
1 + 16k

π(m+1)

)
for some c with 0 ≤ c < 1, i.e.,

−
∑

0≤j≤∞,j 6=m

Bjm ≤ c
( π

16k
(m + 1) + Bmm

)
(24)

for all k ≥ 0, and all m, for some constant 0 ≤ c < 1, where we have used
Bjm ≤ 0 for j 6= m. Now the case k = 0 is trivial so we may assume k > 0.

We can calculate that if m is even, then

∞∑
j=0,jeven

Bjm =
1

8(m + 1)
.

If m is odd then

∞∑

j=0,jedd

Bjm =
m + 1

8m(m + 2)
.
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Equation (24) would then require that−
(∑

j Bjm −Bmm

)
≤ c

(
Bmm + πm+1

16k

)
,

or, if m is even,

4m3 + 8m2 + 4m + 1

8(m + 1)(2m + 1)(2m + 3)
≤ c

(
m + 1

2(2m + 1)(2m + 3)
+

π(m + 1)

16k

)
.

A bit of rearrangement yields

1

c
≤ 4(m + 1)3

4m3 + 8m2 + 4m + 1
+

π(m + 1)2(2m + 1)(2m + 3)

2k(4m3 + 8m2 + 4m + 1)
. (25)

For any fixed k > 0, we want the value of c closest to zero (but less than
1) that makes equation (25) true for all even m. It is easy to see that
the first term on the right in equation (25) is always bigger than 1 (since
4(m + 1)3 = 4m3 + 12m2 + 12m + 4), but approaches one as m approaches
infinity. The second term is strictly increasing for m ≥ 0 (this is each to
check by plotting it as a function of m). It attains it’s minimum value of π

2k

at m = 0. We can thus conclude that equation (25) is satisfied for m ≥ 0 if
we take c such that 1

c
≤ 1 + π

2k
, or c ≥ 1/(1 + π

2k
). We thus take

c =
1

1 + π
2k

=
2k

2k + π
. (26)

Note c < 1.
In the case that m is odd, the diagonal dominance condition (24) becomes

(m + 1)(4m3 + 8m2 − 3)

8m(m + 2)(2m + 1)(2m + 3)
≤ c

(
(m + 1)2

2(2m + 1)(2m + 3)
+

π(m + 1)

16k

)
.

A bit of algebra gives

1

c
≤ 4m(m + 1)(m + 2)

4m3 + 8m2 − 3
+

πm(m + 2)(2m + 1)(2m + 3)

2k(4m3 + 8m2 − 3)
. (27)

It’s again easy to check that the first term is greater than 1 for all ODD
m ≥ 1. Also, the second term is bounded below by 2π/k, so that we need
only 1/c ≤ 1 + 2π/k, or c ≥ 1/(1 + 2π/k). The choice in equation (26)
satisfies this condition, so that this c works for both cases (m even or m
odd). We have proved diagonal dominance of the operator A.

We can rewrite Ac = ã with Amj = δm
j + 16k

π(m+1)
Bjm as

(I + B)c = ã (28)

17



where I is the identity operator and the norm of B, as an operator on `∞ is
bounded as |B| ≤ 1

1+ π
2k

< 1.

We can now find c using a Neumann series, as

c = (I−B)−1ã = (I + B + B2 + ...)ã = ã + Bã + B2ã + ...

Since we proved that our constant c provides diagonal dominance, we can
say that |Bã|∞ ≤ c|ã|∞, where |x|∞ simply means the `∞ norm, i.e., that we
take the largest element (after taking absolute values) of x. We instead of
using the full geometric series to compute c we truncate the expansion after
two terms, we obtain approximation solution c̃ given by

c̃ = (I + B)ã. (29)

Then we have |c− c̃|∞ bounded by c2|ã|∞/(1− c), for

|B2ã + B3ã...|∞ ≤ |B2ã|∞ + |B3ã|∞ + · · · ≤ c2|ã|+ c3|ã|+ ... =
c2

1− c
|ã|.(30)

Of course this means that |cj − c̃j| ≤ c2|ã|∞
1−c

= 4k2|a|∞
π(2k+π)

= O(k2) for all j ≥ 0,

where O(k2) denotes a quantity bounded by Ck2 for some C and all k in a
neighborhood of zero.

Now for the case in which a0 = −π/8 we find that c̃0 = 1
2(1+ 8k

3π
)
, so that

c0 =
1

2(1 + 8k
3π

)
+ O(k2). (31)

Since we know that
∫

σ
[vj] ds = 0 for j ≥ 1, while

∫
σ
[v0] ds = π/2, we find

that ∫

σ

[v] = c0

∫

σ

[v0] =
π/4

(1 + 8k
3π

)
+ O(k2).

Now that we have solved for c0 when the crack lies on the interval [0, 1],
we need to rescale the crack so that it lies on an arbitrary interval [0, ε]. Let
vε(x, y) = εv(x

ε
, y

ε
). Then

∂vε

∂y
(x, 0) =

∂v

∂y
(x/ε, 0) and [vε](x) = ε[v](x/ε).

18



Substituting the properties of vε into Equation (16) gives

∂vε

∂y
(x, 0)− k[vε](x) = −1,

which becomes

∂v

∂y

(x

ε
, 0

)
− kε[v]

(x

ε

)
= −1

for 0 < x < ε. Let x̃ = x
ε

and k̃ = kε. Then our last equation becomes

∂v

∂y
(x̃, 0)− k̃[v] (x̃) = −1

for 0 < x̃ < 1. If we let u = x
ε
, then

ε∫

0

[vε](x)dx = ε

ε∫

0

[v]
(x

ε

)
dx = ε2

1∫

0

[v](u)du =
π
4
ε2

1 + 8kε
3π

.

Therefore our new, rescaled crack satisfies

∫

σ

[u] ds =
π
4
|σ|2

1 + 8k|σ|
3π

+ O(|σ|2 + k2) (32)

where the length of the crack, |σ|, simply equals ε and O(|σ|2 + k2) means a
quantity bounded by C(|σ|2 + k2) for all |σ| and k sufficiently close to zero.
Solving the quadratic equation for |σ| gives us our final length equation of

|σ| =

8
3π

Jk +
√

(Jk 8
3π

)2 + Jπ(nσ · ∇u0(λ))

π
2
(nσ · ∇u0(λ))

. (33)

where J =
∫

σ
[u] ds. Notice that the (nσ · ∇u0(λ)) term must be included

because of Equation (16). In deriving equation (33) we assumed that (nσ ·
∇u0) was a constant over the crack. Note also that although our error term
gets small when k is close to zero, equation (33) works well even for values
of k equal to 10 or larger, as shown in the numerical examples.
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6 Conclusion

In this paper we offered a quick and efficient algorithm to find a single crack
in a bounded, two-dimensional region, given that the flux over the crack is
of the form k[u]. In order to obtain this algorithm, we relied very heavily
on analysis and linear algebra to find our crack length, while our angle and
midpoint results came from past research that extended very nicely to our
problem. We then used a numerical optimization approach to locate small,
well-separated multiple cracks. We also gave some delectable examples to
illustrate our algorithm.

There are many extensions to the research we did in this paper. We think
the next priority should be to reconstruct our arbitrary constant k (found
in the equation ∂u

∂nσ
= k[u]) based on boundary measurements, rather than

specifying it. We also would like an analytical algorithm to locate multiple
cracks, as the method we currently use offers little mathematical insight. The
method also has the major drawback of having to guess the number of cracks
within our region, thereby implying that the amount of cracks is somehow
known (an impractical assumption in the physical world).
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