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1 Introduction

The ability to study the interior of an object without destroying it is an
important industrial tool. One method of recent interest is thermal imaging.
The idea is to use heat energy as a kind of “x-ray”, to form an image of the
interior of an object without causing damage to the object. More precisely,
one applies a controlled source of heat energy to the exterior boundary of the
object, then monitors the temperature of the object’s boundary over time.
This measured boundary temperature is influenced by the internal structure
of the object. For example, an internal crack or void may block the flow of
heat energy, and the heat is forced to flow around the defect. The goal is
to determine the internal structure—e.g., locate cracks—from this exterior
temperature data.

A simplified version of the method assumes that the problem is steady-state,
that is, the applied heat flux and measured temperatures do not depend on
time. We examine this version of the problem in this paper, and specif-
ically the mathematics involved in using steady-state thermal methods to
the imaging of internal circular defects or “inclusions” of a particular type
described below. We should note that the same essential mathematics also
governs the method of impedance imaging, that is, the use of applied electrical
current/measured boundary voltages for imaging the interior of an object.

A similar problem for a single internal defect was studied in [4], for a rather
general case of the problem. Our approach, which adapts to multiple defects,
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is based on a variation of the so-called “reciprocity gap” technique, which we
describe below; see [1] or [2] for more information on this approach.

2 The Forward and Inverse Problems

The “forward problem” is that set of equations that govern the steady-state
flow of heat through an object with one or more internal defects. For the
moment we will concentrate on the case in which only one defect is present.

Let D be the object of interest, a bounded region in R2 with boundary ∂D.
We assume, after appropriate scaling and introduction of dimensionless vari-
ables, that the thermal conductivity and diffusivity of D are both equal to
one. Within D there is a circular region B (an “inclusion”) of radius R cen-
tered at a point C∗; we use ∂B to refer to the boundary of B. The region B
may have thermal properties (conductivity, diffusivity) that differ from those
of the surrounding material D\B, but we assume for the moment that B has
the same thermal properties as the rest of D. We may think of the object D
as a composite material, an object B bonded to or embedded in an object
D \B along the curve ∂B. Refer to Figure 1:

D\B

B

Figure 1: A region D with single inclusion B.
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However, it may be the case that the interface ∂B between B and D \B has
begun to disbond or corrode, a situation we wish to detect from measure-
ments taken on ∂D (since the interior of the object is not accessible without
causing damage to the object). If this is the case then heat will not flow freely
across ∂B, but will experience a kind of “resistance” due to the presence of
the corrosion or a gap. We now present a simple mathematical model of this
situation.

First, we assume that a known time-independent heat flux g(x, y) is applied
to ∂D. The quantity

∫
∂D

g(x, y) ds where ds is arc length on ∂D is sim-
ply the net rate at which heat energy is pumped into D. We assume that∫

∂D
g(x, y) ds = 0, that is, the heat being pumped into D is balanced by

heat flowing out, so that net influx of heat energy is zero. If this is the case
then temperature within D will stabilize over time, and approach a steady-
state temperature u(x, y), which depends on (x, y) position but not time.
Conservation of energy (see [5]) dictates that the function u will satisfy the
steady-state heat equation or Laplace’s equation

4u = 0 (1)

within D \ B and B, where 4 = ∂2

∂x2 + ∂2

∂y2 . The derivation of Laplace’s
equation is based on the modelling assumption that if u is the temperature
in a region then −∇u(x, y) measures the rate at which heat energy flows past
(x, y) (−∇u since heat energy flows from hot to cold).

Note, however, we do not assume that u satisfies Laplace’s equation over
the corroded boundary ∂B (indeed, as we model below, u may not even be
continuous over ∂B).

On the outer boundary ∂D the input heat flux is modelled as (see [5], chapter
6)

∂u

∂n
= g(x, y) on ∂D (2)

where n is a unit normal outward vector field on ∂D.

We model the corroded or disbonded surface ∂B as follows: First, we assume
that u need not be continuous over ∂B. For a point (x, y) ∈ ∂B we use
u−(x, y) to denote the limiting value of u(x, y) from inside B, and u+(x, y) to
denote the limiting value of u(x, y) from outside B. We also define [u](x, y) =
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u+(x, y)−u−(x, y); [u] is the temperature “jump” over the corroded interface
∂B. In the absence of any corrosion we would have [u] ≡ 0. Let n denote
a unit normal outward vector field on ∂B. We also use ∂u−

∂n
and ∂u+

∂n
for

the limiting values of ∇u · n from inside and outside ∂B, respectively. In
particular, ∂u−

∂n
is the rate at which heat energy is crossing ∂B from outside

to inside B, as measured just inside ∂B. Similarly, ∂u−
∂n

is the rate at which
heat energy is crossing ∂B from outside to inside B, as measured just outside
∂B. Conservation of energy in fact forces ∂u−

∂n
= ∂u+

∂n
everywhere on ∂B, so

when convenient we will write simply ∂u
∂n

to refer to their common value.

The boundary condition which models corrosion on ∂B is

∂u+

∂n
=

∂u−

∂n
= k[u] on ∂B (3)

where k is some constant, which we refer to as the “transmission constant.”
The constant k is related to the severity of the corrosion. For example, if
k = 0, then ∂B is completely disbonded from D, for we have ∂u

∂n
= 0, that is,

no heat energy may cross ∂B. If k is large then heat flows more easily over
∂B. Equation (3) models the interface ∂B as a kind of “contact resistance”,
in which heat energy flows in proportion to the temperature difference ([u])
on each side of the interface, with constant of proportionality k.

In fact, the constant k might well depend on position too, but for simplicity
we will not consider this case here (see [4] for an examination of this issue).

Equations (1)-(3) define the forward problem and uniquely determine u up
to an additive constant. That is if u denotes any function which satisfies
equations (1)-(3) then u + c also satisfies the equations, for any constant c.
We can nail down a unique solution by adding the condition that

∫
∂B

u ds = 0.

The inverse problem of interest is this: suppose that we are unable to access
the interior of D, but are only able to measure u(x, y) on ∂D for a given
g(x, y). Can we determine the center, radius, and transmission constant of
B?
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3 The Reciprocity Gap Principle

We begin by recalling Green’s Second Identity ([5], section 7.2).

Theorem 1 (Green’s Second Identity) For any pair of functions u and
w that are C2(D) we have

∫ ∫

D

(u4w − w4u) dA =

∫

∂D

(
u
∂w

∂n
− w

∂u

∂n

)
ds.

We can make use of Green’s identity to solve the inverse problem.

Let us choose a “test function” w(x, y) that is harmonic (4w = 0) throughout
D. We also recall that our temperature function u(x, y) is harmonic within
B and D\B, so we also have 4u = 0 within B and D\B. By using Green’s
Second Identity on B we find

∫

∂B

(
u−

∂w−

∂n
− w

∂u−

∂n

)
ds = 0 (4)

where all quantities are superscripted with a minus sign since the relevant
values on ∂B are those obtained by approaching ∂B from the interior. By
using Green’s Second Identity on the region D\B (and note that the outward
normal on D \B is MINUS the outward normal on B) we find

∫

∂D

(
u+∂w+

∂n
− w

∂u+

∂n

)
ds−

∫

∂B

(
u+∂w+

∂n
− w

∂u+

∂n

)
ds = 0 (5)

with “plus” superscripts in this case.

If we add equations (4) and (5) we find

∫

∂D

(
u+∂w+

∂n
− w

∂u+

∂n

)
ds +

∫

∂B

(
u−

∂w−

∂n
− w

∂u−

∂n

)
ds

−
∫

∂B

(
u+∂w+

∂n
− w

∂u+

∂n

)
ds = 0 (6)

We note that on ∂B we have (since w is harmonic, hence smooth through
D) that ∂w+

∂n
= ∂w−

∂n
, ∂u+

∂n
= ∂u−

∂n
, and w+ = w−. Thus we have from equation
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(6), after cancellations,
∫

∂D

(
u
∂w

∂n
− wg

)
ds =

∫

∂B

[u]
∂w

∂n
ds. (7)

We call the left side of equation (7) the Reciprocity Gap functional, and we
write it as RG(w). Note that RG(w) =

∫
∂D

(u∂w
∂n
− wg) ds is computable for

any w, given the input flux g and measured temperature u on ∂D. If no
defect is present then RG(w) = 0 for all choices of w.

The functional RG(w) allows us to use information from ∂D to derive in-
formation about the quantity on the right in equation (7). The general
procedure is to use cleverly chosen “test functions” w to recover ∂B and/or
the transmission constant.

4 Locating the Center of a Single Inclusion

We are able to use the Reciprocity Gap function to approximately locate the
center of the inclusion. In what follows we will identify R2 with the complex
plane, and write C∗ = x∗ + iy∗ when convenient. We will first consider the
following Lemma.

Lemma 2 Suppose B is an inclusion with center C∗ = x∗ + iy∗ and radius
R. Let wη be the harmonic function wη(x, y) = 1

η
eη(x+iy) where η 6= 0 is any

complex number. The Reciprocity Gap functional applied to wη(x, y) can be
approximated as

RG(wη) ≈ ReηC∗
∫ 2π

0

eiθ[u](θ) dθ + O(R2)

∫ 2π

0

eiθ[u](θ) dθ

where [u](θ) denotes [u] evaluated at the point x = x∗ + R cos(θ), y = y∗ +
R sin(θ) on ∂B and O(R2) denotes a quantity bounded by AR2 for some
positive constant A (which does not depend on R).

Proof For wη(x, y) = 1
η
eη(x+iy), we have ∇wη = ηwη < 1, i >. If we

parameterize ∂B in polar coordinates, we find that

x = x∗ + R cos(θ), y = y∗ + R sin(θ).
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We then have

RG(wη) =

∫

∂B

∇wη · n[u](θ) ds

=

∫ 2π

0

eηC∗eR(cos(θ)+i sin(θ)) < 1, i > · < cos(θ), sin(θ) > [u](θ) ds

= ReηC∗
∫ 2π

0

eR(cos(θ)+i sin(θ))eiθ[u](θ) dθ (8)

where we’ve used ds = r dθ. We can approximate

eR(cos(θ)+i sin(θ)) = 1 + O(R)

and so from equation (8) we have

RG(wη) = ReηC∗
∫ 2π

0

eiθ[u](θ) dθ + O(R2)

∫ 2π

0

eiθ[u](θ) dθ.

which proves the Lemma.

The Reciprocity Gap functional has been defined as a functional applied
to wη(x, y). For notational simplicity let us now consider RG(wη) with
wη(x, y) = 1

η
eη(x+iy) as a function of η, and define φ(η) = RG(wη). We also

drop the higher order error term involving O(R2) (in doing so we assume
that R is small). We consider the following corollary.

Corollary 3 If the O(R2) term in Lemma 2 is dropped then the center C∗

of a circular inclusion (in the form of a complex number), can approximated
as

C∗ =
φ′(η)

φ(η)
.

Proof If we drop the O(R2) term in Lemma 2, we have φ(η) = RG(w) =

ReηC∗
∫ 2π

0
eiθ[u](θ) dθ. Differentiate φ(η) with respect to η to find φ′(η) =

C∗φ(η) which immediately yields the Corollary.

It is important to note here that we can compute φ′(η) from the boundary
data, as

φ′(η) = RG

(
∂w

∂η

)
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where ∂w
∂η

can be computed explicitly.

We now have a method for locating the center of an inclusion B given bound-
ary data on ∂D. We will illustrate below with a numerical example, after
we’ve shown how to compute R and k.

5 Finding R and k for a Single Inclusion

We will now find the radius R of B as well as the transmission constant
k, given the center C∗ and the boundary data on ∂D. In what follows let
u0(x, y) denote the temperature in the region D with no inclusion B, with
∂u0

∂n
= g on ∂D; note u0 is harmonic in D, and uniquely determined up to an

additive constant.

Lemma 4 Let w(x, y) be some harmonic function on all of D. The Reci-
procity Gap Function can be represented in terms of the radius, the center,
and the transmission constant (R, C∗, and k, respectively) as

RG(w) =
2πR2

1 + 2kR
∇u0(C

∗) · ∇w(C∗)

+
πR4

1 + kR

(
∂2w

∂x2
(C∗)

∂2u0

∂x2
(C∗) +

∂2w

∂x∂y
(C∗)

∂2u0

∂x∂y
(C∗)

)
+ O(R6)

where O(R6) denotes a quantity bounded by CR6 for some constant C.

Proof Let v = u− u0. That is, v is a small correction in the “no-inclusion”
temperature u0 when there is an inclusion in the region D. The function v
satisfies

4v = 0 in B, D\B (9)

∂v

∂n
= 0 on ∂D (10)

∂v−

∂n
=

∂v+

∂n
= k[u]− ∂u0

∂n
on ∂B. (11)

Because [u0] = 0 we see that [u] = [u0] + [v] = [v] so that equation (11) can
be written as

∂v

∂n
= k[v]− ∂u0

∂n
(12)
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where we use ∂v
∂n

for the common value of ∂v−
∂n

and ∂v+

∂n
. Note that the above

conditions determine v up to an arbitrary additive constant.

We use (r, θ) as polar coordinates about the center of the inclusion C∗. We
will explicitly write out v in terms of u0 to “good approximation”.

Let vD\B and vB denote the restriction of v to D\B and B, respectively. We
attempt an expansion of each as follows:

vB(r, θ) =
∞∑

m=0

(cm cos(mθ) + dm sin(mθ))rm (13)

vD\B(r, θ) =
∞∑

m=0

(am cos(mθ) + bm sin(mθ))r−m (14)

for constants am, bm, cm, dm. Note that the expansion of (13) is definitely
possible for suitable constants cm, dm (section 6.3, [5]). However, the expan-
sion of equation (14) ignores terms of the form rm cos(mθ) and rm sin(mθ).
If R is sufficiently small, however, these terms should be negligible; we will
remark on this below.

Our goal is to work out the coefficients am, bm, cm, dm as explicitly as possible
in terms of u0, then related this to RG(w).

Equation (11) dictates that
∂vD\B

∂r
= ∂vB

∂r
on r = R, for ∂

∂n
= ∂

∂r
because the

outward normal vector for the circle is in the radial direction. Thus we need

∞∑
m=1

m(cm cos(mθ) + dm sin(mθ))Rm−1

=
∞∑

m=1

−m(am cos(mθ) + bm sin(mθ))R−m−1.

By matching terms we find that

am = −R2mcm (15)

and

bm = −R2mdm. (16)
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Let u0 have Fourier expansion

u0 =
∞∑

m=0

(em cos(mθ) + fm sin(mθ))rm (17)

(note that e0 can be chosen arbitrarily, so we’ll take e0 = 0). From equation
(12) we have for r = R that

∞∑
m=1

m(cm cos(mθ) + dm sin(mθ))Rm−1 − k[cos(mθ)(amR−m − cmRm)

+ sin(mθ)(bmR−m − dmRm)] = −
∞∑

m=1

m(em cos(mθ) + fm sin(mθ))Rm−1.

Matching the cosine terms above yields

mcmRm−1 − k(amR−m − cmRm) = −memRm−1

so that with equation (15) we have

cm =
−mem

m + 2kR
. (18)

The same reasoning with equation (16) shows that dm = −mfm

m+2kR
. Thus we

have

[u](R, θ) = [v](R, θ)

=
∞∑

m=1

cos(mθ)(amR−m − cmRm) + sin(mθ)(bmR−m − dmRm)

= 2
∞∑

m=1

(
em cos(mθ) + fm sin(mθ)

m + 2kR

)
mRm. (19)

This gives us [u](R, θ) in terms of the Fourier coefficients of u0.

Let us perform a similar computation for any harmonic test function w. We
expand

w =
∞∑

m=0

(gm cos(mθ) + hm sin(mθ))rm (20)
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for coefficients gm, hm, so that when we evaluate the derivative ∂w
∂n

for r = R
we find

∂w

∂r
=

∞∑
m=1

m(gm cos(mθ) + hm sin(mθ))Rm−1. (21)

Now recall the Reciprocity gap functional RG(w) =
∫

∂B
[u]∂w

∂n
ds. From the

expansions (19) and (21) we obtain (after integrating term by term and using
orthogonality)

RG(w) =
2πR2

1 + 2kR
(e1g1 + f1h1) +

4πR4

1 + kR
(e2g2 + f2h2) + O(R6). (22)

By using ∂
∂r

= cos(θ) ∂
∂x

+ sin(θ) ∂
∂y

and ∂
∂θ

= − sin(θ)
r

∂
∂x

+ cos(θ)
r

∂
∂y

it’s not hard

to see from the expansions (17) and (20) that

∇w(C∗) =< g1, h1 > ∇u0(C
∗) =< e1, f1 >

e2 =
1

2

∂2u0

∂x2
(C∗) f2 =

1

2

∂2u0

∂x∂y
(C∗)

g2 =
1

2

∂2w

∂x2
(C∗) h2 =

1

2

∂2w

∂x∂y
(C∗).

When we substitute the previous results into equation (22) we find the Reci-
procity Gap function to be

RG(w) =
2πR2

1 + 2kR
∇u0(C

∗) · ∇w(C∗)

+
πR4

1 + kR

(
∂2w

∂x2
(C∗)

∂2u0

∂x2
(C∗) +

∂2w

∂x∂y
(C∗)

∂2u0

∂x∂y
(C∗)

)
+ O(R6).

This proves the Lemma.

If we choose the harmonic function w(x, y) = 1
η
eη(x+iy) and choose two dis-

tinct values for η, we then have a system of two equations, RG(w(η1)) and
RG(w(η2)), with two unknowns, R and k. Therefore we can solve for R and
k. We have the found the center, radius, and transmission constant of the
inclusion B.
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6 A Numerical Example

Using several computer programs, we will now give a numerical example of
our algorithm. We assume that D is the unit disk in two dimensions. Using
a C program developed by Dr. Kurt Bryan, we are able to input the center,
radius, and transmission constant of an inclusion, as well as an input heat
flux, and the program outputs the values of u(x, y) at n points along ∂D.
For the following example we use an inclusion centered at (0.3, 0.4) with a
radius of 0.15 and a transmission constant of 0.9. We will set the heat flux to
be g = sin(2θ) and use the program to compute 100 values of u(x, y) evenly
spaced around ∂D.

This “measured” data is loaded into a Maple notebook. We use a harmonic
function wη(x, y) = 1

η
eη(x+iy) for various choices of η and numerically evaluate

RG(wη) using the trapezoidal rule. As mentioned above, we define φ(η) =
RG(wη), and recall that we can calculate φ′(η). In this example with η = 1
we find the center reconstructed according Corollary 3 at (0.315, 0.420). The
choice of η has little effect on the estimate of the center.

Once we’ve located the center we can estimate the radius and transmission
coefficient. In what follows we will take, for the moment, our estimate of the
center as the true value (0.3, 0.4) (rather than the slightly erroneous estimate
above) and calculate the radius and transmission constant of the inclusion.
We choose two values of η and calculate φ(η) for each η. For our example,
we choose η1 = 1 + i and η2 = 1− i. We obtain φ(η1) = 0.009 + 0.050i and
φ(η2) = 0.086+0.080i. We thus obtain the following system of two equations
with two unknowns, R and k:

0.009 + 0.050i =
2πR2

1 + 2kR
(0.4 + 0.3i) e(1+i)(0.3+0.4i)

+
πR4

1 + kR
(i(1 + i)e(1+i)(0.3+0.4i))

0.086 + 0.080i =
2πR2

1 + 2kR
(0.4 + 0.3i) · e(1−i)(0.3+0.4i)

+
πR4

1 + kR
(i(1− i)e(1−i)(0.3+0.4i)).

We then solve the above equations with Newton’s method to find R = 0.1505
and k = 0.8527.
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However, if we use the slightly inaccurate value for C∗ we obtain very poor
results—large negative values for k, highly erroneous values for R. The
computation is quite unstable with respect to the simultaneous estimates of
k and R. If, however, we regard k as known (even approximately) we can
recover R with good stability. In the present case using k = 1 in the equation
φ(1 + i) = c (with C∗ = 0.315 + 0.42i as recovered, and where c is computed
from the boundary data) yields R ≈ 0.1504, while k = 0.1 yields R ≈ 0.133.
Alternatively, we can recover k stably if R is considered known. The precise
stability of the problem of recovering both k and R simultaneously is a topic
for further study.

7 Multiple Inclusions

We will now consider the case of multiple circular inclusions within a two-
dimensional region. As with the one inclusion case, we will consider a two-
dimensional region as D with boundary ∂D. Within D we assume that there
exist N circular inclusions which we will denote by Bj, 1 ≤ j ≤ N ; here N
itself may also be considered unknown. Each Bj has a radius of Rj and a
transmission constant of kj. We assume 4u = 0 in D \ ∪N

j=1Bj and in each
Bj, and that equation (2) holds on ∂D. We also assume that equation (3)
holds on each ∂Bj, with k replaced by kj.

We will use a slightly different approach to locating the inclusions within D.
Most importantly (and unfortunately), we do not have a method for finding
Rj and kj simultaneously; we need Rj in order to find kj, or we need kj in
order to find Rj.

We first recall our Reciprocity Gap test function wη(x, y) = 1
η
eη(x+iy), and

set φ(η) = RG(wη). Also recall that in the case of a single inclusion B,
from Lemma 2 we can write, to good approximation, φ(η) = JeηC∗ where
J =

∫
∂B

eiθ[u](θ) ds where ds = R dθ. For multiple inclusions a very similar
argument shows that

φ(η) =
N∑

j=1

Jje
ηC∗j . (23)
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with

Jj =

∫

∂Bj

eiθ[u](θ) ds + O(R2). (24)

We may not know the exact number N of inclusions in our region since the
interior cannot be accessed, but below we outline a procedure for finding N .

7.1 Locating N Centers

Because φ(η) is of the form (23), it must satisfy a constant-coefficient linear
ODE of the form

cMφ(M)(η) + cM−1φ
(M−1)(η) + . . . + c1φ

′(η) + c0φ(η) = 0 (25)

for certain constants cj and M ≥ N . The reason for this is that the general
solution to an ODE like (25) is a linear combination of exponentials, epη,
where p ∈ C is a root of the characteristic polynomial xM +

∑M
j=1 cjx

j. If
the cj are chosen so that the C∗

j are among the roots (possible if M ≥ N)
then φ(η) as defined by equation (23) will satisfy the ODE (25).

Recall that we can use our boundary data to compute φ(η) and its derivatives
of any order. If we choose M ≥ N distinct values of η then equation (25)
yields M linear equations with M unknowns cj, which we can solve. As
shown in [3] the rank of the resulting matrix gives the number of exponential
terms in φ (which is the number of inclusions), provided we use a value of
M which exceeds N , the true number of inclusions.

On N is determined we can then evaluate (25) for N distinct values of η and
solve the resulting linear system of N equations in N unknowns for the cj.
Given the coefficients cj, we can solve for the roots of p(x) (the characteristic
equation for the ODE) where

p(x) = xN +
N∑

j=1

cjx
j.

The roots of p(x) are the centers of the inclusions. An example is given
below.
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Note that once we have recovered the centers C∗
j , we can use equation (23)

to evaluate φ(ηk) for N distinct values of ηk and thereby recover the Jj by
solving a system of linear equations.

7.2 The Jump Integral

As we stated earlier, we will present a method for finding either Rn or kn,
given that the other is known. The central result is the following lemma.

Lemma 5 Let J be defined by equation (24) for the case j = 1 with a single
inclusion (N = 1). Then J can be rewritten in terms of the center, radius,
and transmission constant of the inclusion as

|J | = 2πR2 |∇u0(C
∗)|

1 + 2kR
+ O(R2).

Proof The proof of Lemma 5 closely mimics the proof of Lemma 4. We
again use u0(x, y) for the harmonic function which has Neumann data g and
set v = u− u0. With wη(x, y) = 1

η
eη(x+iy) we obtain ∇wη =< 1, i > eη(x+iy).

Lemma 4 states that

RG(wη) =
2πR2

1 + 2kR
∇u0(C

∗) · ∇wη(C
∗) + O(R4)

Taking the magnitude of the Reciprocity Gap functional and using the above
function wη(x, y) yields

|RG(wη)| =
2πR2

1 + 2kR
|∇u0(C

∗)| eηC∗ + O(R4) (26)

= JeηC∗ + O(R2) (27)

where we make use of (23) and (24). Comparing the right sides of (26) and
(27) shows

|J | = 2πR2

1 + 2kR
|∇u0(C

∗)|+ O(R2)
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as asserted.
For multiple inclusions, we also expect the integral Jj as defined by equation
(24) to be (to leading order in Rj) of the form

|Jj| =
2πR2

j

∣∣∇u0(C
∗
j )

∣∣
1 + 2kjRj

. (28)

We now have the integrals Jj in terms of C∗, Rj, and kj. We recall our
multiple inclusion Reciprocity Gap function, equation (23), and consider it
as a function of η. We can calculate φ(η) and we now have C∗

j . Therefore if
we choose N distinct values of η, we have N equations of N unknowns (those
unknowns being Jj). Thus we can solve for each value of Jj.

Once we have the Jj and C∗
j we can use equation (28) to solve for Rj if we

are given kj or vice-versa.

8 A Numerical Example of Multiple Inclu-

sions

We will now present a numerical example that illustrates how to locate N
inclusions within a region. To solve the forward problem we use a similar
program to the one we used to demonstrate our single inclusion case. We will
give the program the center, the radius, and transmission constant for each
inclusion Bj within D, where D is again the unit disk. For our example we
will use two inclusions within D. Our first inclusion B1 will be centered at
(0.4, 0.6) with a radius of R1 = 0.15 and a transmission constant of k1 = 0.9.
Our second inclusion B2 will be centered at (−0.3, 0.7) with a radius of
R2 = 0.1 and a transmission constant of k2 = 0.75. We again use input
flux g(θ) = sin(2θ) (so the harmonic function with the boundary data is
u0(x, y) = xy).

Let us first consider the case in which we know the actual number of inclu-
sions. We use a C program to find the value of u(x, y) at a given number of
points (50 to 100) along ∂D. We feed these values into a Matlab notebook,
we are able to calculate φ(η) for any given η as well as the derivatives of
φ(η). We will choose two values for η, η1 = 1 and η2 = −1, and have Matlab

16



calculate the first two derivatives of φ(η1) and φ(η2). We use these values to
solve the system of equations obtained from (25), specifically

c2φ
′′(η1) + c1φ

′(η1) + c0φ(η1) = 0

c2φ
′′(η2) + c1φ

′(η2) + c0φ(η2) = 0

where without loss of generality we may take c0 = 1. Once we have values
for c2 and c1 we can solve for the roots of the quadratic equation

c2m
2 + c1m + c0 = 0. (29)

In the present case we find c2 = −0.5596 + 0.1048i, c1 = −0.1087 − 1.3224i
(recall c0 = 1). The roots of the characteristic equation (29) are −0.3027 +
0.7072i and 0.4114 + 0.6152i, quite close to the correct center values.

Once we have located the centers of the inclusions, we are easily able to
calculate J1 and J2 by evaluating φ(η) for two values of η. In this case we
take η = 1 and η = −1 and find J1 = 0.0706+0.0484i, J2 = 0.0401−0.0167i.
From this we can calculate R or k, if we are given the other. Let us assume
that we know k1 = 0.9 and k2 = 0.75. From equation (28) we calculate
R1 = 0.1533 and R2 = 0.1018 (note we know that ∇u0 =< y, x >). Figure
2 below shows the accuracy of the reconstructions. Alternatively, we can
consider R1 and R2 known and so estimate that k1 = 0.74 and k2 = 0.565,
not quite as accurate as the radius estimation.

If we use equation (25) with a guess of M = 5 (and five distinct values for η;
we use the fifth roots of unity) we find that the resulting linear system for the
cj has rank two. Specifically, a singular value decomposition of the five by
five matrix obtained from equation (25) yields two non-zero singular values
0.4665 and 0.0663; the remaining values are less than 10−5. This indicates
that only two inclusions are present, and we can proceed as above.
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Figure 2: Reconstruction of two inclusions.

9 Conclusion and Future Work

We used the reciprocity gap approach with carefully chosen test functions
to reduce the problem of identifying the centers of one or more inclusions
to that of identifying the coefficients in a function φ which is a sum of ex-
ponentials. This is easily done by noting that such functions satisfy very
simple ODE’s. The radii of the inclusions are obtained by deriving a rela-
tion between the “jump” coefficients Jn which appear in φ and the radii.
This relation involves the transmission coefficient for each inclusions, which
we must consider known. However, in the case of a single inclusion a more
careful analysis shows that we can recover both the radius and transmission
coefficient. The k value was found to be more sensitive to noise than was R.
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Future work should be done to stabilize estimates of k.

It would be desirable to find a way to get both R and k simultaneously for
the multiple inclusion case since there are more real world applications for
that scenario. We would also like to find an algorithm for single and multiple
inclusions in R3. Another case to consider would be a case where the material
on the outside of the inclusion boundary is different from the material on the
inside of the inclusion boundary. This would mean that ∂u+

∂r
= α∂u−

∂r
for some

constant α, that is, the material on the outside of the inclusion has a different
thermal conductivity than the material on the inside of the inclusion.
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