
Nondestructive Electrothermal Detection of Corrosion

Brittany Ambeau, Harris Enniss, and Stefan Schnake

November 30, 2011



Abstract

Nondestructive testing and imaging plays an important role in many industries, e.g., the mon-
itoring and maintenance of corrosion in aircraft. The general technique is to input energy in
some form into an object, observe the object’s response, and from this input-output information
determine the internal structure.

New techniques are always being explored, and recently there has been much interest in
methods that use multiple forms of energy. In this vein, we examine a new technique for imaging
corrosion or material loss in an object by combining electrical and thermal measurements on
some accessible portion of the object’s outer boundary. The flow of electrical and thermal energy
through the object is modeled using partial differential equations, and imaging the corrosion
leads to a mathematical “inverse problem.” We examine limits and stability of this type of
imaging, and develop an effective numerical algorithm for solving these types of problems.
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Chapter 1

Introduction

1.1 Context and motivation

In many structural contexts, it is important to be able to inspect the interior of some object for
defects or voids. A number of methods have been tested or implemented to allow such inspection
without requiring disassembly or destruction of the object in question. One promising method
is electrothermal imaging, whereby an electric current generates heat within an object, and the
resulting temperature distribution can be used to obtain an image of the object.

In the problem examined here, we assume a nearly-rectangular, homogeneously electric and
thermal conducting domain Ω of length L and height 1 of which one boundary, Γ, is damaged.
We assume Γ can be parameterized as the graph of a continuously differentiable function S(x),
where S has support strictly contained in the interval (0, L). On the sides of the rectangle
({x = 0, 0 ≤ y ≤ 1} and {x = L, 0 ≤ y ≤ 1}) we input a nonzero electric current. Figure 1.1
shows the physical setting of the problem. Electrical current flows from left to right through Ω

-g g

Γ={(x,y) | y=S(x)}

Figure 1.1: Physical Setting

around the void delineated by S(x). In the narrowest regions of Ω, above the peaks of S(x),
the current flow is increased by the void, and so the voltage drops more rapidly. At the same
time, this increase in current means an increase in resistive heating. Hot-spots appear where
current is strongest, and heat propagates outwards to the surface where it can be observed.

In practice, both voltage and temperature can be observed, and either can be used to produce
an image of the damage profile S(x). Such measurements might be used to obtain an image
of a structural member where it adjoins some other component, or, with modifications to the
domain and boundary conditions, the interior of a pipe, or in other contexts where it is difficult
or impossible to access the face of some object.

We should note that other input current fluxes could be used, but most of our reconstructions
focus on this particular input flux for simplicity.
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1.2 Contents

The report is organized as follows. In Chapter 2 we examine the purely electrical version of
the problem. We (1) give a detailed statement of the inverse problem, (2) form a linearized
version of such inverse problem, that is, we linearize a relationship between the back surface
described by S(x) and the voltage data, (3) construct and regularize an algorithm for recovering
estimates of the back surface, and (4) provide a number of examples. In Chapter 3 we examine
the electrothermal version of the problem. In this version we use temperature data to obtain a
solution. Discussion of our results and conclusive remarks are included in Chapter 4.
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Chapter 2

Electrical Case

If we inject an electrical current flux g (constant flux per unit length) on the left boundary
and remove a constant current flux g on the right boundary, as in Figure 1.1, and assume for
convenience that the region Ω has a constant electrical conductivity of 1, then the standard
model for conduction shows that the electric potential u = u(x, y) inside Ω satisfies

∆u = 0 in Ω (2.1)

∂u

∂n
= 0 on Γ (2.2)

∂u

∂n
= 0 on ∂Ω ∩ {y = 1} (2.3)

∂u

∂n
= g on ∂Ω ∩ {x = 0} (2.4)

∂u

∂n
= −g on ∂Ω ∩ {x = 1} (2.5)

where Γ denotes the potentially damaged back surface. Here we are assuming that the damaged
surface is electrically insulating. Note that (2.1)-(2.5) determines u only up to an arbitrary
additive constant; the value of this constant does not matter, but can be uniquely determined
with an additional normalization, e.g.,

∫
∂Ω u ds = 0.

The inverse problem we are interested in is this: We input a flux g and measure u on the
top surface, and from this information we want to deduce the function S(x).

2.1 Linearization

Given knowledge of the domain, and in particular the function S(x), we can in principle compute
u in Ω. Thus there is some “back surface to data” map M : C1(Γ) → C0(top) defined by
M(S) = u(x, 1) where u satisfies (2.1)-(2.5). We would like to find an inverse map M−1 that
allows us to compute S(x) from knowledge of u(x, 1).

The mapping M is nonlinear, however, and the problem is greatly simplified if we linearize
M about the “nominal” uncorroded back surface y = 0. This is also physically reasonable, since
we expect corrosion to be relatively small. To this end, let us suppose that S is of the form
S(x) = ϵS0(x) for some function S0 and “small” ϵ > 0. We seek an approximation solution
u = u0+ ϵû to (2.1)-(2.5), with error of order O(ϵ2), where u0 is the solution to (2.1)-(2.5) with
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undamaged back surface S ≡ 0. Specifically, u0 satisfies

∆u0 = 0 in Ω0 (2.6)

∂u0
∂n

= 0 on ∂Ω0 ∩ {y = 0} (2.7)

∂u0
∂n

= 0 on ∂Ω0 ∩ {y = 1} (2.8)

∂u0
∂n

= g on ∂Ω0 ∩ {x = 0} (2.9)

∂u0
∂n

= −g on ∂Ω0 ∩ {x = 1} (2.10)

on the rectangle Ω0 = (0, L) × (0, 1). The function u0 can be computed, and in fact for this
simple input flux u0(x, y) = −gx (up to an additive constant).

For simplicity we define ϵû = ū. Following [NS], the function ū must (formally) satisfy

∆ū = 0 in Ω (2.11)

∂ū

∂n
= − ∂

∂x

(
S(x)

∂u0
∂x

(x, 0)

)
on Γ (2.12)

∂ū

∂n
= 0 on ∂Ω \ Γ (2.13)

obtained by plugging u = u0 + ϵû into equations (2.1)-(2.5), expanding into power series in ϵ
about ϵ = 0, and dropping terms of order ϵ2 and higher.

In what follows we replace equations (2.1)-(2.5) governing the nonlinear forward problem
with their linearized versions (2.11)-(2.13). Note that the function ū is also determined only up
to an arbitrary additive constant.

2.2 Solving the Forward and Inverse Problem

A standard separation of variables allows us to deduce that any function satisfying the PDE
(2.11) and boundary condition (2.13) must be of the form

ū(x, y) =
1

2

∞∑
k=0

ck(e
−λk+λky + eλk−λky) cos (λkx) (2.14)

for some constants ck, where λk = kπ
L . The constants ck could be determined from S(x), but of

course we don’t know S. What we do know is ū(x, 1), the measured voltage data, and this can
instead be used to determine the ck, from which ū can be found, and then S.

In particular, from (2.14) we have (using y = 1)

ū(x, 1) =

∞∑
k=0

ck cos(λkx).

Since ū(x, 1) can be expressed via a Fourier series, we know

ck =
2

L

∫ L

0
ū(x, 1) cos(λkx) dx (2.15)

for all k ∈ N. Since ū(x, 1) can be measured along the top surface, we can use (2.15) to recover
the ck for all k ∈ N and from that ū(x, y) on all of Ω.

To recover S itself, note that on Γ (2.12) tells us

∂ū

∂n
= − ∂

∂x

(
S(x)

∂u0
∂x

(x, 0)

)
. (2.16)

5



In addition we can we can take the derivative of (2.14) with respect to the outward normal
vector which in this case is the negative derivative with respect to y. This gives us

∂ū

∂n
= −ūy(x, 0) =

1

2

∞∑
k=0

λkck(e
−λk − eλk) cos(λkx). (2.17)

Equating (2.16) and (2.17) forces S(x) to satisfy the differential equation

∂

∂x

(
S(x)

∂u0
∂x

(x, 0)

)
=

1

2

∞∑
k=0

λkck(e
−λk − eλk) cos(λkx). (2.18)

As noted above, solving (2.6) - (2.10) gives us the solution

u0(x, y) = −gx (2.19)

on Ω0. Substituting (2.19) into (2.18) gives us

g
∂S

∂x
=

1

2

∞∑
k=0

λkck(e
−λk − eλk) cos(λkx) (2.20)

which we must solve for S(x). Indeed, if we divide both sides by g and integrate in x (with the
assumption S(0) = 0, i.e., the corrosion does not extend to the edge of the sample) we obtain

S(x) =

∞∑
k=1

dk sin(λkx) (2.21)

with

dk =
e−λk − eλk

2g
ck (2.22)

a Fourier sine series for S. This allows us to recover S(x) with any nonzero input flux g. In
particular, we have shown

Lemma 1. Let ū denote the solution to (2.11)-(2.13). The data ū(x, 1) for 0 < x < L uniquely
determines the function S if S(0) = 0.

2.3 Numerical Approximation

Using COMSOL Multiphysics, we created a damage profile on a rectangle with length 20 and
height 1, and simulated an electric current g = 1 injected at the left side and pulled from the
right. We then took a sampling of the voltage at 401 locations distributed uniformly across
the top surface. In order to obtain the coefficients ck we used a trapezoidal approximation of
(2.15). Using Maple 14, we approximated S(x) by truncating the infinite sum in (2.21).

Let N denote the number of terms summed in (2.21). Figure 2.1 is a graph of our ap-
proximation with N = 8, and with the solid line being our approximation and the dashed line
being the actual S(x) where S(x) = 3

40

√
−x2 + 24x− 128 when x ∈ [8, 16] and 0 otherwise.

The approximation was constructed with voltage data that had Gaussian noise level of 0.01.
Figure 2.2 shows the next four graphs when N = 16, 32, 48, and 64 respectively.

Noise dominates this reconstruction as N grows. This can be seen by noting that noise in
the measured data induces noise in the Fourier coefficients, and so we obtain noisy coefficients
given by

c̃k = ck + Ek (2.23)
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Figure 2.1: Approximation with N = 8

Figure 2.2: Approximation with 16, 32, 48, and 64 terms

for some error sequence Ek. The magnitude of the Ek can be estimated from the amount of noise
in the data. Then from (2.20), the measured Fourier coefficients for the boundary condition are
given by

d̃k = dk =
e−λk − eλk

2g
(ck + Ek) = dk +

e−λk − eλk

2g
Ek. (2.24)

Any error Ek in approximating ck will by magnified by this growing exponential. The high-
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frequency terms therefore contain substantial noise, and cannot be trusted in the reconstruction.

2.4 Regularization

Truncation of the Fourier expansion allows us to remove high frequency noise, but is a rather
crude approach. A more careful method gradually phases out high frequency terms by applying
a weight in the range [0, 1] to each coefficient. Let dk be given by equation (2.22). If we know
the ck exactly then we know the dk. However, we only know an approximate value for c̃k given
by equation (2.23), and hence an erroneous value d̃k given by equation (2.24). We wish to
perform a weighted reconstruction of the form

S̃(x) =
∞∑
k=1

wkd̃k sin(λkx) (2.25)

where the weights wk gradually decrease from 1 to 0. From (2.21) and (2.25) we have

S(x)− S̃(x) =

∞∑
k=1

(dk − wkd̃k) sin(λkx)

=
∞∑
k=1

(dk(1− wk) + wk(e
−λk − eλk)Ek/2g) sin(λkx).

Parseval’s identity applied to the sine series on the interval (0, L) yields

∥S − S̃∥2L2(0,L) =
L

2

∞∑
k=1

(dk(1− wk) + wk(e
−λk − eλk)Ek/2g)

2 (2.26)

We seek those wk that minimize the above expression. We can clearly work term by term in
k. The value wk that minimizes (ck(1 − wk) − wkEk)

2 is easily found by differentiating with
respect to wk, to obtain

2(dk(1− wk) + wk(e
−λk − eλk)Ek/2g)(−dk + (e−λk − eλk)Ek/2g) = 0.

The solution is

wk =
gdk

gdk + Ek(eλk − e−λk)/2
.

Note that if Ek = 0 then wk = 1, as expected, while if Ek ̸= 0 and k is large then wk ≈ 0. That
the formula for wk depends on dk and Ek would seem to be a problem. Ultimately, however, we
need not know the precise form, but only the general manner of decay. First, we may estimate
or bound the value of Ek, say |Ek| ≤ E for some constant E (that depends on the noise level
in the data). We then have

wk =
gdk

gdk +E(eλk − e−λk)/2
.

Also, we may make reasonable assumptions about the manner in which the Fourier coefficients
dk decay to zero, e.g.,

dk ≈ 1

C(k + 1)2
.

Other forms could be considered, but this typical for twice continuously differentiable functions
S. Tests with typical sample damage profiles suggest C = 196 as a reasonable coefficient. This
yields a regularized solution which may be more useful, as below, in which we use E = 10−5.
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2.5 Summary

By linearizing the mapping between damage profiles and voltage, we can produce an approxi-
mate PDE from which we can reproduce the profile of a damaged surface. This method suffers
from excessive noise, and must be regularized to produce useful data.
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Chapter 3

Electrothermal Case

When electrical current flows through an object with any resistance, heat is generated. Let
v(x, y, t) denote the temperature of Ω at any given time. Our goal in this chapter is to explore
the possibility of using measurements of v on the accessible portion of Ω to determine the
corrosion profile on the back surface.

By Joule’s Law, the rate of heat production per area of Ω per unit time is assumed to be in
proportion to the square of the current magnitude. We assume that after suitable rescaling the
function v satisfies

∂v

∂t
−∆v = |∇u|2 in Ω× [0,∞). (3.1)

If we assume our experiment starts at t = 0, with zero initial temperature, then we have the
initial condition v(x, y, 0) = 0 in Ω. We also need boundary conditions for v. For simplicity, we
consider the case where the domain is thermally insulated, so ∂v

∂n = 0 at all points on ∂Ω.
In general, the electrothermal problem is described by equations (2.6) − (2.10) and (3.1),

along with

∂v

∂n
= 0 on Γ (3.2)

∂v

∂n
= 0 on ∂Ω \ Γ (3.3)

v(x, y, 0) = 0 for all x, y in [0, L]× [0, 1]. (3.4)

3.1 Linearization

We intend to use the data v(x, 1, t) to recover S. However, similar to the Electric Case, the
mapping S(x) → v(x, 1, t) is nonlinear, therefore, we shall (formally) linearize. We want to find
a v̂ such that v0 + εv̂ = v0 + v̄ approximately satisfies the PDE for S(x) = εS0(x), where v0 is
the temperature on an undamaged rectangle. Thus,

∂(v0 + εv̂)

∂t
−∆(v0 + εv̂) = |∇(u0 + εû)|2 in Ω× [0,∞) (3.5)

∂(v0 + εv̂)

∂n
= 0 on Γ (3.6)

∂(v0 + εv̂)

∂n
= 0 on ∂Ω \ Γ (3.7)

v0(x, y, 0) + εv̂(x, y, 0) = 0 for all x, y in [0, L]× [0, 1] (3.8)
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Using the initial PDE, equations (3.5) through (3.8) become

∂v̂

∂t
−∆v̂ =

|∇(u0 + εû)|2 − |∇u0|2

ε
in Ω× [0,∞) (3.9)

∂v̂

∂n
= 0 on Γ (3.10)

∂v̂

∂n
= −1

ε

∂v0
∂n

on ∂Ω \ Γ (3.11)

v̂(x, y, 0) = 0 for all x, y in [0, L]× [0, 1] (3.12)

Simplifying (3.9) we obtain

∂v̂

∂t
−∆v̂ =

|∇(u0 + εû)|2 − |∇u0|2

ε

=
∇(u0 + εû) · ∇(u0 + εû)−∇(u0) · ∇(u0)

ε
= 2(∇u0 · ∇û) + ε|∇û|2.

Because ε|∇û|2 should be close to zero when ϵ is near zero, we have justification to drop this
term and write

∂v̂

∂t
−∆v̂ = 2(∇u0 · ∇û) in Ω× [0,∞) (3.13)

or

∂v̄

∂t
−∆v̄ = 2(∇u0 · ∇ū) in Ω× [0,∞). (3.14)

3.2 Techniques for Solution

Again, similar to the Electrical Case, we will focus on the case in which we inject current
at one side and pull it out at the other. Using boundary conditions (2.2) - (2.5), we obtain
u0 = −gx. This forces ∇u0 · ∇ū = ∂ū

∂x . By solving for v0 in (3.2) - (3.4), we have v0 = t for all
(x, y) ∈ [0, L]× [0, 1]. These substitutions change (3.9) through (3.12) into

∂v̄

∂t
−∆v̄ = 2

∂ū

∂x
in Ω× [0,∞) (3.15)

∂v̄

∂n
= 0 on ∂Ω (3.16)

v̄(x, y, 0) = 0. (3.17)

Proceeding as suggested by [KB], let S(x) be given the by following Fourier sine expansion

S(x) =
∞∑
k=1

Sk sin(λkx) (3.18)

where λk = kπ
L . Note that the derivative of S(x) is

∂S

∂x
=

∞∑
k=1

λkSk cos(λkx). (3.19)

However we also have a form for the derivative of S(x) given by (2.20). Comparing (2.20) and
(3.19) shows us

1

2
ck =

Sk

e−λk − eλk
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for all k ∈ N. By doing this we can compute S(x) only up to an additive constant. We can
modify ū(x, y) to be

ū(x, y) =
∞∑
k=1

Sk

e−λk − eλk
(e−λk+λky + eλk−λky) cos (λkx) . (3.20)

With some minor computations, we obtain

2
∂ū

∂x
(x, y) = −

∞∑
k=1

2λkSk

e−λk − eλk
(e−λk+λky + eλk−λky) sin(λkx). (3.21)

A standard separation of variables shows that

Lemma 2. In general, v̄ will have the form

v̄(x, y, t) =
∑

j,m=0

ϕjm(t) cos(λjx) cos(mπy)

for some sequence of functions ϕjm(t).

Indeed, we can compute the ϕjm. Substituting v̄(x, y, t) into (3.15) gives us

v̄t −∆v̄ =
∑

j,m=0

(ϕ′
jm(t) + µjmϕjm(t)) cos(λjx) cos(mπy) (3.22)

where µjm = π2(j2/L2+m2). Let 2∂ū
∂x(x, y) have the following Fourier cosine-cosine expansion.

2
∂ū

∂x
(x, y) =

∞∑
j=0,m=0

ajm cos(λjx) cos(mπy) (3.23)

where the constants ajm are given by

ajm =
qjm
L

∫ L

0

∫ 1

0
2
∂ū

∂x
(x, y) cos(λjx) cos(mπy) dy dx (3.24)

where qjm = 4 if j,m > 0, qjm = 2 if j = 0 or m = 0 (but not both), and q00 = 1. Comparing
the coefficients in (3.22) and (3.23) shows that ϕjm(t) must satisfy the following ODE

ϕ′
jm(t) + µjmϕjm(t) = ajm. (3.25)

Solving (3.25) for ϕjm(t) gives

ϕjm(t) =
ajm
µjm

(1− e−µjmt) (3.26)

for (j,m) ̸= (0, 0) and ϕ00(t) = a00t. Substituting ϕjm(t) into (3.22) gives us

v̄(x, y, t) = a00t+
∑
j ̸=0
m̸=0

ajm
µjm

(1− e−µjmt) cos(λjx) cos(mπy) (3.27)

In order to compute ajm we can use (3.24) and (3.21) to obtain

ajm = −qjm
L

∫ L

0

∫ 1

0

∞∑
k=1

2λkSk(e
−λk+λky + eλk−λky)

e−λk − eλk
sin(λkx)

× cos(λjx) cos(mπy) dy dx (3.28)
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The integrals can by evaluated using the following properties:∫ L

0
cos(λjx) sin(λkx) dx = −Lk(1 + (−1)j+k+1)

π(j2 − k2)
(3.29)∫ 1

0
cos(mπy)(e−λk+λky + eλk−λky) dy = −Lk(e−λk − eλk)

π(k2 +m2L2)
. (3.30)

Using (3.29) and (3.30) to solve the left side of (3.28) gives us a form for ajm

ajm = qjm

∞∑
k=1
k ̸=j

2k3Sk(1 + (−1)j+k+1)

π(j2 − k2)(k2 +m2L2)
(3.31)

for j ̸= 0 and m ̸= 0, while

a00 = −
∞∑
k=1

2Sk(1 + (−1)k+1)

πk
. (3.32)

It is important to see that while j ̸= k when adding across k in (3.31), if j = k, then (3.29)
shows us that the term would be 0. Therefore we are not affecting aj,m by removing this special
case.

Lemma 2 along with equations (3.26), (3.31) and (3.32) give the function v̄ in terms of the
Fourier coefficients Sk of the function S.

3.3 The Inverse Problem

We now show how to use these computations to solve the inverse problem of recovering S from
the top surface data v(x, 1, t) where 0 < x < L and t ranges over some interval 0 < t < T . Since
we are measuring the heat across the top surface on some time interval, we know

v̄(x, 1, t) = a00t+
∑
j ̸=0
m̸=0

(−1)m
ajm
µjm

(1− e−µjmt) cos(jπx/L). (3.33)

We can also suppose v̄(x, 1, t) has the Fourier cosine expansion

v̄(x, 1, t) =

∞∑
n=0

fn(t) cos(λnx) (3.34)

where

fn(t) =
2

L

∫ L

0
v̄(x, 1, t) cos(λnx) dx

for all n ∈ N and

f0(t) =
1

L

∫ L

0
v̄(x, 1, t) dx

when n = 0. Note that the functions fn(t) can be computed from the data v(x, 1, t) over the
same time range.

Substituting (3.33) for v(x, 1, t) (and knowing that
∫ L
0 cos(λjx) cos(λnx)dx = 0 unless j = n)

gives us

fn(t) =
∞∑

m=0

(−1)m
anm
µnm

(1− e−µnmt) (3.35)
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for all n ≥ 1 while

f0(t) = a00t+
∞∑

m=1

(−1)m
a0m
µ0m

(1− e−µ0mt) (3.36)

if n = 0. If we use (3.31) to replace anm in (3.35) we obtain

fn(t) = 2

∞∑
m=0

∞∑
k=1
k ̸=n

(−1)m

µnm
(1− e−µnmt)qnm

k3Sk(1 + (−1)n+k+1

π(n2 − k2)(k2 +m2L2)

= 2

∞∑
k=1
k ̸=n

( ∞∑
m=0

(−1)mqnm(1− e−µnmt)k3(1 + (−1)n+k+1)

πµnm(n2 − k2)(k2 +m2L2)

)
Sk

(3.37)

In the case n = 0, using (3.32) and (3.36)

f0(t) = −
∞∑
k=1

(
2t(1 + (−1)k+1

πk

)
Sk

+
∞∑

m=1

∞∑
k=1

2(−1)mq0mk3(1 + (−1)k+1)(1− e−µ0mt)

πµ0m(−k2)(k2 +m2L2)
Sk

f0(t) = −
∞∑
k=1

(
2t(1 + (−1)k+1

πk

)
Sk

−
∞∑

m=1

∞∑
k=1

2(−1)mq0mk(1 + (−1)k+1)(1− e−µ0mt)

πµ0m(k2 +m2L2)
Sk.

(3.38)

Equations (3.37) and (3.38) can be summarized as

fn(t) =
∞∑
k=1

Mnk(t)Sk (3.39)

where

Mnk(t) = 2
∞∑

m=0

(−1)mqnm(1− e−µnmt)k3(1 + (−1)n+k+1)

πµnm(n2 − k2)(k2 +m2L2)
, k ̸= n, n ̸= 0

M0k(t) = −2t(1 + (−1)k+1)

πk
−

∞∑
m=1

2(−1)mq0mk(1 + (−1)k+1)(1− e−µ0mt)

πµ0m(k2 +m2L2)
.

We can express this as

f⃗(t) =

 f0(t)
f1(t)
...

 =

 M0,1(t) M0,2(t) · · ·
M1,1(t) M1,2(t)

...
. . .


 S1

S2
...

 = M(t)S⃗. (3.40)

Fix N , and let us assume that Sn = 0 for all n > N . Then also disregarding fn−1(t) for n > N ,
this becomes an approximate transformation M̃(t) from one finite-dimensional vector space to
another. The vector-valued function f⃗(t) can be computed, and so S⃗ can be computed from
M(t)S⃗ = f⃗(t), a system of linear equations for the Sk. We can use whatever value for N is
appropriate, and any number of times. The resulting system is likely to be over-determined,
but can be solved in a least-squares sense. Using multiple time values help determine a better
approximation of Sk when noise is added to the top surface thermal data v̄(x, 1, t).
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3.4 Numerical Approximation and Examples

We used the same process for constructing a damaged rectangle (same dimensions) as in the
electrical case. However instead of measuring voltage, we measured heat at 401 spots distributed
uniformly across the top surface. We did this every .05 seconds for 5 seconds total giving us 101
time samples at each position. Figure 3.1 shows our approximation with N = 128. Similarly
the dashed line is the actual damage profile with the solid line is our approximation.

Note that the differentiation in (2.20) limits us to obtaining S(x) to within an additive
constant. Thus we make the assumption that the damage is confined to within an interval of
the boundary, such as

[
L
10 ,

9L
10

]
, and that S(x) = 0 at the endpoints of this interval. Taking the

average value of our image at these points allows us to shift it by an appropriate amount. Thus
we obtain an image from the electrothermal data.

Figure 3.1: Approximation with no noise (left) and noise=.01 (right)

3.5 Summary

Much as in Chapter 2, the nonlinear map may be usefully approximated as a linear map, and
this permits the reconstruction of the damage profile. This method shows less noise at high
frequencies, and so can reproduce relatively fine scale features of the damage. It can be applied
with a single image of temperature at a single time, but is improved by the addition of data
from multiple times.
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Chapter 4

Conclusion

Both electric and electrothermal methods allow images of an inaccessible boundary to be ob-
tained. A careful analysis of the relative merits is yet to come. However, electrothermal imaging
appears to be more powerful, as it does not suffer from the high-frequency instability of electri-
cal imaging. Regularization, as used to control this instability, limits the resolution of electrical
imaging. Electrothermal imaging also appears able to exploit an abundance of time-slices to
reduce noise. This should be interpreted cautiously, however, as this advantage may depend on
the type of noise. For instance, if noise is spatial (but constant in time), it is not expected that
the inclusion of multiple time-slices will provide any benefit.

Much work remains to be done for the electrothermal imaging technique. For example, it
is known that the electrical imaging problem has a unique solution S(x) both for the linear
approximation (this is Lemma 1) and for the fully nonlinear problem. The uniqueness ques-
tion is open for both the linearized and fully nonlinear electrothermal problem, that is, given
v(x, 1, t), does there exist S(x), unique up to an additive constant, which induces the tempera-
ture v(x, 1, t)? Initially it might appear that any finite subset of the Fourier coefficients could
be fixed arbitrarily, and the remaining coefficients determined by taking a finite subset of the
remaining matrix as before. If so, this allows us to construct multiple solutions. However, it is
possible that all such alternate solutions fail to converge, leaving only a single unique solution in
L2. Either proving that this is so, or finding a counter-example, will be sufficient to determine
the question of uniqueness.

The system (3.40) also needs much more analysis, to establish not only uniqueness but also
stability. Such an analysis would also give insight into how one should choose that times at
which the fn(t) are estimated, to maximize resolution and stability.
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