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1 Introduction

Developing methods for the nondestructive testing of materials is an important area of re-
search for industry. Situations often arise in which the integrity of an object is questioned, but
testing it is very difficult. For example, a support bar may be embedded in a larger structure
so that testing the bar’s integrity directly would require the impractical task of breaking down
the larger structure. Instead, the ends of the bar might be accessible without dismantling the
enclosing structure. The goal of nondestructive testing is to use methods that require taking
measurements at the ends of the bar alone to give information about the interior of the bar.
Two approaches of recent interest for nondestructive testing involve thermal imaging (using
temperature measurements) and impedance imaging (using electrical measurements).

This paper explores combining the two existing methods to produce a new method of
performing nondestructive testing of materials. A one-dimensional bar and two-dimensional
plate are considered. The basic idea behind this approach is as follows: suppose the interior
of the object to be tested is corroded or damaged in some way. The corrosion will have an
effect on the object’s electrical properties; namely, its conductivity in the corroded region is
changed. If current is injected into the object, it will produce heat due to Joule heating–just
as current passing through any resistor produces heat. By observing the resulting temperature
at the boundary of the object, the conductivity profile of the object can be reconstructed. This
reconstructed profile contains information about the position and severity of the corrosion.
The paper details the mathematics of such an approach and comments on its practicality.
The technique has already been proven effective for locating interior cracks in an object; see
[2, 3, 4].

1.1 The Forward Problem

Consider a domain Ω ⊂ Rn whose boundary is ∂Ω. Let u(~r) be the electric potential
on Ω, v(~r, t) be the temperature on Ω, and γ(~r) be the electrical conductivity on Ω, where
~r denotes the position vector in Rn. We assume 0 < q1 ≤ γ(~r) ≤ q1 < ∞ for some
constants q1, q2. In the conventional electric conduction model (current flux equal to −γ∇u,
plus conservation of charge inside Ω; note we assume current flows from higher to lower
potential) the following equation is obeyed by u in Ω:

∇ · (γ∇u) = 0 (1)

Equation (1) describes the flow of current throughout the domain Ω. This current generates
Ohmic heating in the interior of Ω, with power density per unit area equal to γ|∇u|2. Let us
assume that the thermal conductivity and diffusivity of Ω is 1, for simplicity. Then a standard
conservation of energy argument shows that the temperature v(~r, t) obeys

vt −∆v = γ|∇u|2. (2)

A simplifying assumption is implicit in the heat equation: the thermal conductivity is not
considered affected by the corrosion. The term on the right side of equation (2) is the Joule
heating term, which models the heat generated by current flowing through a resistor and
couples equations (1) and (2).
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The forward problem consists of knowing γ and then solving for u(~r) and v(~r, t) on all
of Ω, given certain boundary conditions for both functions on ∂Ω and an initial condition on
v. This paper considers the case where the domain is thermally isolated, that is ∂v

∂n = 0 where
n is the unit normal along the boundary. We also specify an input electrical flux in the form
∂u
∂n = g on ∂Ω and an initial condition on v, typically v(~r, 0) = 0. The resulting forward
problem is well-posed (possesses a unique solution, except that u is determined only up to
an additive constant) and can be solved using numerical techniques. In our research the finite
element software FEMLAB (now known as COSMOL Multiphysics) was used to solve these
equations for a specified γ. The solutions to the forward problem help greatly in trying to
solve the inverse problem which follows.

1.2 The Inverse Problem

The inverse problem consists of knowing the input electric current flux g on ∂Ω and the
resulting response v(~r, t) on part or all of ∂Ω over some time range, then trying to reconstruct
γ(~r). We might also incorporate information concerning u on ∂Ω. This inverse problem is
not as well-known as the forward problem, so this research period was spent investigating it.
The research process started by running the finite-element forward solver to solve equations
(1) and (2) for a given γ, on both one- and two-dimensional regions Ω (typically the interval
(0, 1) or the square (0, 1)2.) The values of v(~r, t) on ∂Ω were then written to a data file. Based
on the boundary data, attempts were made to reconstruct the original γ. These attempts and
associated proven results are documented in the rest of the paper.

2 One Dimensional Case

2.1 Theory

In one dimension, the following theorem holds. Note that equations (1) and (2) make
perfect sense in one-dimension.

Theorem 2.1 (One Dimensional Uniqueness Theorem):
Let Ω = (0, 1). Suppose that u(x) satisfies (γ(x)u′(x))′ = 0 in Ω with the boundary condi-
tions −γ(0)u′(0) = −1 and γ(1)u′(1) = 1 and v(x, t) satisfies

vt − vxx = γ(x)(u′(x))2, 0 < x < 1 (3)

vx(0, t) = vx(1, t) = 0 (4)

v(x, 0) = 0. (5)

Then knowledge of v(0, t) (or v(1, t)) for 0 < t < ∞ uniquely determines the function γ(x).

Proof. Note that −γ(0)u′(0) is the input current flux at x = 0 and γ(1)u′(1) is the input flux
at x = 1; these are equal and of opposite sign, since the problem is steady-state (what goes in
must come out at the same rate). We can write out the function u(x) rather explicitly. From
(γu′)′ = 0 we may conclude that γu′(x) is constant and indeed from the boundary conditions
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we have γ(x)u′(x) = 1. Thus u′(x) = 1/γ(x). We also find (with the normalization u(0) =
0, since u is determined only up to an additive constant) that

u(x) =
∫ x

0

dz

γ(z)
.

This means that
γ(u′(x))2 =

1
γ(x)

. (6)

We assume that v satisfies the insulating boundary conditions vx(0, t) = vx(1, t) = 0 for
all t, and that v(x, 0) = 0. It is well-known that solutions to the heat equation under these
conditions are unique. This can be shown with a simple energy argument; see [1]. We will
demonstrate the existence of a solution via separation of variables and write the solution out
rather explicitly. This is of value in solving the inverse problem.

Consider v(x, t) of the form

v(x, t) =
∞∑

j=0

cj(t) cos(jπx).

This function satisfies the boundary conditions vx(0, t) = vx(1, t) = 0. Let the jth Fourier
coefficient of 1

γ(x) be denoted fj . Then inserting v of the form hypothesized above into
equation (3) implies

∞∑

j=0

(ċj(t) + j2π2cj(t)) cos(jπx) =
∞∑

j=0

fj cos(jπx),

from which it follows that
ċj(t) + j2π2cj(t) = fj . (7)

Solving this differential equation with the initial condition v(x, 0) = 0 (which implies cj(0) =
0 for each j) gives

cj(t) =

{
fj

j2π2 (1− e−j2π2t), if j 6= 0
f0t, if j = 0.

(8)

Using equation (8), the solution to the heat equation can be written as

v(x, t) = f0t +
∞∑

j=1

fj

j2π2
(1− e−j2π2t) cos(jπx). (9)

Then, on the boundary at x = 0,

v(0, t) = f0t +
∞∑

j=1

fj

j2π2
(1− e−j2π2t) = f0t +

∞∑

j=1

fj

j2π2
−

∞∑

j=1

fj

j2π2
e−j2π2t (10)
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From just this known boundary data at x = 0, the Fourier coefficients of 1
γ(x) can be recovered

using an exponential stripping algorithm. The following succession of limits gives the values
of the fj’s:

f0 = lim
t→∞

v(0, t)
t

∞∑

j=1

fj

j2π2
= lim

t→∞ v(0, t)− f0t

f1 = −π2 lim
t→∞

v(0, t)− f0t−
∑∞

j=1
fj

j2π2

e−π2t

f2 = −4π2 lim
t→∞

v(0, t)− f0t−
∑∞

j=1
fj

j2π2 + f1

π2 e−π2t

e−4π2t

f3 = −9π2 lim
t→∞

v(0, t)− f0t−
∑∞

j=1
fj

j2π2 + f1

π2 e−π2t + f2

4π2 e−4π2t

e−9π2t

f4 = −16π2 lim
t→∞

v(0, t)− f0t−
∑∞

j=1
fj

j2π2 + f1

π2 e−π2t + f2

4π2 e−4π2t + f3

3π2 e−3π2t

e−16π2t

...

Therefore, the Fourier coefficients of 1
γ(x) can be recovered using the just the data v(0, t) for

0 < t < ∞, and hence γ(x) can be recovered uniquely. A similar argument shows that γ(x)
can be recovered from the data v(1, t) for 0 < t < ∞ as well.

Of course the proof of Theorem 2.1 also gives a constructive approach to recovering γ
from data, which we illustrate in the next section.

2.2 Results

Theorem 2.1 illustrates that data taken at just one boundary is sufficient to recover the
conductivity function of the bar—provided that data is taken for all time. Of course, in prac-
tice, data can only be taken for a finite time, thus making the precise computation of the limits
described in the theorem impossible.

To solve the inverse problem computationally, an estimate of the function is made, by
truncating the Fourier expansion,

v(0, t) ≈ ṽ(0, t) = f0t +
N∑

j=1

fj

j2π2
(1− e−j2π2t) (11)

= f0t +
N∑

j=1

fj

j2π2
−

N∑

j=1

fj

j2π2
e−j2π2t, (12)

for some N ∈ N. With this estimation, a least square analysis can be performed to recover the
fj’s. For example, if the temperature at x = 0 is taken every 0.001 seconds for 0 < t < 0.5
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(a total of 500 data points), the following quantity is minimized with respect to the unknown
Fourier coefficients f0, . . . , fN :

500∑

k=1

(ṽ(0, 0.005 k)− v(0, 0.005 k))2 (13)

This method can be improved by considering data on both ends of the bar. At the right
boundary we have

v(1, t) ≈ ṽ(1, t) = f0t +
N∑

j=1

(−1)j fj

j2π2
(1− e−j2π2t) (14)

= f0t +
N∑

j=1

(−1)j fj

j2π2
−

N∑

j=1

(−1)j fj

j2π2
e−j2π2t. (15)

Then the odd and even Fourier coefficients can be solved for separately, since

ṽ(1, t) + ṽ(0, t) = 2f0t +
N∑

j>0 even

2fj

j2π2
−

N∑

j>0 even

2fj

j2π2
e−j2π2t

ṽ(1, t)− ṽ(0, t) = −
N∑

j>0 odd

2fj

j2π2
+

N∑

j>0 odd

2fj

j2π2
e−j2π2t.

As in equation (13), a least squares analysis can be performed to solve for the fj’s by mini-
mizing

500∑

k=1

[(ṽ(1, 0.005 k) + ṽ(0, 0.005 k))− (v(1, 0.005 k) + v(0, 0.005 k))]2 (16)

and
500∑

k=1

[(ṽ(1, 0.005 k)− ṽ(0, 0.005 k))− (v(1, 0.005 k)− v(0, 0.005 k))]2 (17)

as functions of the fj . The process is quite unstable, however, especially for the fj in which
j is large. This is illustrated below.

Example 2.2.1 (1D Reconstruction):
To test the algorithm for γ reconstruction outlined above, consider the function

γ(x) =
{

60(x− 0.78)2 + 0.3, if 0.672 ≤ x ≤ 0.888
1, otherwise.

(18)

The following graphs show the difference between the reconstructed 14-term Fourier approx-
imation to the function (left) and its actual 14-term Fourier approximation (right).
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Example 2.2.1 illustrates how computational error affects the reconstruction process. This
example reconstructed γ using a 14-term Fourier approximation. Adding higher order terms
in this case introduces error that renders the reconstruction useless. The reason for the insta-
bility in the recovery of higher order terms can be seen in equation (8). The reconstruction
algorithm solves for the cj(t)’s from boundary data. In terms of the cj(t)’s then, the fj’s are:

fj =
j2π2cj(t)
1− eπ2j2t

(19)

Any error in the cj(t)’s in the reconstruction gets magnified as j gets larger. This means the
problem is particularly ill-posed. Generally, about 13 or 14 terms of the Fourier series of 1

γ
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can be reconstructed reasonably. The reconstruction is worse if the magnitudes of 1
γ ’s higher

order Fourier coefficients are larger.
It would be worthwhile for a future REU group to pursue more effective methods for this

exponential stripping algorithm.

2.3 Steady state theory

Some additional progress can be made by considering the steady-state version of the
problem.

As noted in the proof of Theorem 2.1, v(x) has the form

v(x) = f0t +
∞∑

k=1

fk

k2π2

(
1− e−k2π2t

)
cos(kπx).

We shall make the substitutions

w(x, t) =
∞∑

k=1

fk

k2π2

(
1− e−k2π2t

)
cos(kπx),

w̃(x) = lim
t→∞w(x, t) =

∞∑

k=1

fk

k2π2
cos(kπx).

Then
v(x, t) = f0t + w(x, t) ∼ f0t + w̃(x). (20)

To develop the steady state theory further, we let

ρ(x) =
1

γ(x)
,

ρ∗(x) = ρ(x)− 1,

R∗
1(x) =

∫ x

0
ρ∗(z) dz,R∗

1 = R∗
1(1),

R∗
2(x) =

∫ x

0
R∗

1(z) dz, R∗
2 = R∗

2(1),

Note that ρ is the resistivity of the region. We then have ρ = 1 + ρ∗, so ρ∗ is merely the
perturbation of the corroded region from the nominal value of 1. Furthermore, let us define
a symmetric corroded region to be an interval such that ρ∗(x) (or ρ) is even with respect to
some midpoint m. We may then state the following lemma.

Lemma 2.3.1:
If ρ∗(x) ≡ 0 except on a single symmetric corroded region (a, b), then R∗

2 = (1−m)R∗
1.
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Proof. From the symmetry condition on ρ∗ we may deduce the following symmetry relations,
which are easily verified:

ρ∗(m + x) = ρ∗(m− x),
R∗

1(m + x) = R∗
1 −R∗

1(m− x),
R∗

2(m + x) = R∗
2(m− x) + xR∗

1.

Since ρ∗(x) ≡ 0 for x ≤ a, we find that R∗
1(x) = R∗

2(x) = 0 for all x ≤ a. It follows from
the symmetry relations that

R∗
1(b) = R∗

1 −R∗
1(a) = R∗

1,

R∗
2(b) = R∗

2(a) + (b−m)R∗
1 = (b−m)R∗

1.

From these statements we then find that

R∗
2 =

∫ 1

0
R∗

1(x) dx

=
∫ b

0
R∗

1(x) dx +
∫ 1

b
R∗

1(x) dx

= R∗
2(b) +

∫ 1

b
R∗

1 dx

= (b−m)R∗
1 + (1− b)R∗

1 = (1−m)R∗
1.

With this we establish the main result of this section:

Theorem 2.2 (Midpoint Formula):
If ρ∗(x) ≡ 0 except on a single symmetric corroded region (a, b), then the midpoint m of this
region is given as

m = lim
t→∞

(
1
2

+
v(1, t)− v(0, t)
u(1)− u(0)− 1

)
.

Proof. Since (γ(x)u′(x))′ = 0 and γ(0)u′(0) = 1, it follows that γ(x)u′(x) = 1, and
u′(x) = 1

γ(x) = ρ(x). Then

u(1)− u(0) =
∫ 1

0
ρ(x) dx =

∫ 1

0
(1 + ρ∗(x)) dx = 1 + R∗

1.

For the heat equation vt − vxx = ρ(x), the fact that vt − vxx = f0 + (wt − wxx) and the
approximation wt − wxx ≈ −w̃′′(x) we obtain f0 − w̃′′(x) = ρ(x) or

w̃′′(x) = f0 − ρ(x)
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where we make use of (20). Two integrations with respect to x then gives

w̃′(x)− w̃′(0) = f0x−R∗
1(x)− x, (21)

w̃(x)− w̃(0)− w̃′(0)x =
1
2
f0x

2 −R∗
2(x)− x2

2
. (22)

Observe that since vx(x, t) = wx(x, t) ∼ w̃′(x), the insulating boundary condition on v(x, t)
forces w̃′(0) = w̃′(1) = 0. Equation (21) in the case x = 1 then implies that f0 = 1 + R∗

1.
Applying Lemma 2.3.1 to (22) (and again note that w̃′(0) = 0) in the case x = 1 produces

w̃(1)− w̃(0) = (1 + R∗
1)/2−R∗

2 − 1/2
= R∗

1/2− (1−m)R∗
1

= (m− 1/2)R∗
1.

Solving for m and noting that

lim
t→∞ (v(1, t)− v(0, t)) = w̃(1)− w̃(0)

gives the desired formula

m =
1
2

+
w̃(1)− w̃(0)

R∗
1

= lim
t→∞

(
1
2

+
v(1, t)− v(0, t)
u(1)− u(0)− 1

)
.

Note that the result f0 = 1 + R∗
1 is independent of the assumptions on ρ, and is true in

general.

3 Two Dimensional Case

3.1 Theory

In two dimensions, the following theorem holds:

Theorem 3.1 (Two Dimensional Partial Uniqueness Theorem):
On the unit square Ω = (0, 1)2, if u(x, y) satisfies

∇ · (γ∇u) = 0 on Ω (23)

γ
∂u

∂n
= g on ∂Ω (24)

∫

∂Ω
u(x, y) dx = 0 (25)
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and

vt −∆v = γ|∇u|2 in Ω (26)
∂v

∂n
= 0 on ∂Ω (27)

v(x, y, 0) = 0, (28)

then knowledge of v(x, 0, t) for 0 < t < ∞ uniquely determines the function γ|∇u|2 on Ω.

Proof. Similar to Theorem 2.1, a standard separation of variables shows that the solution to
the heat equation (26) with the boundary condition (27) has the form

v(x, y, t) =
∞∑

j=0

∞∑

k=0

cjk(t) cos(jπx) cos(kπy) (29)

Let the Fourier coefficients of γ|∇u|2 with respect to the orthogonal basis cos(jπx) cos(kπy)
be denoted fjk. Then substituting v of the form in equation (29) into (26) implies

ċjk(t) + (j2 + k2)π2cjk(t) = fjk (30)

The solution to this differential equation is

cjk(t) =

{
fjk

(j2+k2)π2 (1− e−(j2+k2)π2t), if j > 0 or k > 0,

f00t, if j, k = 0.
(31)

Thus, in terms of the fjk’s, the solution to the heat equation is

v(x, y, t) = f00t +
∞∑

j=0

∞∑

k=0︸ ︷︷ ︸
j 6=0 or k 6=0

fjk

(j2 + k2)π2
(1− e−(j2+k2)π2t) cos(jπx) cos(kπy). (32)

On the boundary y = 0,

v(x, 0, t) = f00t +
∞∑

j=0

∞∑

k=0︸ ︷︷ ︸
j 6=0 or k 6=0

fjk

(j2 + k2)π2
(1− e−(j2+k2)π2t) cos(jπx). (33)

Now, fix a value for j. Exploiting Fourier’s trick, it follows that if j 6= 0

2
∫ 1

0
v(x, 0, t) cos(jπx) dx =

∞∑

k=0

fjk

(j2 + k2)π2
(1− e−(j2+k2)π2t). (34)

and if j = 0 ∫ 1

0
v(x, 0, t) dx = f00t +

∞∑

k=1

f0k

k2π2
(1− e−k2π2t). (35)
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The integrals on the left side of equations (34) and (35) can be computed from the given
boundary data. The fjk’s can then be recovered from equations (34) and (35) using a similar
exponential stripping process as outlined in Theorem 2.1. For example, the f2k’s can be
recovered as follows. For ease of notation, let

2
∫ 1

0
v(x, 0, t) cos(2πx) dx = g(t).

Then,

g(t) =
∞∑

k=0

f2k

(22 + k2)π2
−

∞∑

k=0

f2k

(22 + k2)π2
e−(22+k2)π2t. (36)

Computing the following limits gives the f2k’s:
∞∑

k=0

f2k

(22 + k2)π2
= lim

t→∞
g(t)
t

f20 = −4π2 lim
t→∞

g(t)−∑∞
k=0

f2k

(22+k2)π2

e−4π2t

f21 = −5π2 lim
t→∞

g(t)−∑∞
k=0

f2k

(22+k2)π2 + f20

4π2 (e−4π2t)

e−5π2t

f22 = −8π2 lim
t→∞

g(t)−∑∞
k=0

f2k

(22+k2)π2 + f20

4π2 (e−4π2t) + f21

5π2 (e−5π2t)

e−8π2t

f23 = −13π2 lim
t→∞

g(t)−∑∞
k=0

f2k

(22+k2)π2 + f20

4π2 (e−4π2t) + f21

5π2 (e−5π2t) + f22

8π2 (e−8π2t)

e−13π2t

...

Therefore, the Fourier coefficients of γ|∇u|2 can be recovered using the just the data v(x, 0, t)
for 0 < t < ∞, and hence γ|∇u|2 can be recovered uniquely.

It should be clear that we can recover γ|∇u|2 using the data for v from any side of the
square Ω. Of course, the recovery of the Fourier coefficients is very ill-posed and, as in the
one-dimensional case, it would be beneficial to explore more sophisticated and regularized
algorithms than the least-square procedure we used. Also, the recovery of γ|∇u|2 in Ω is
only the first step in the recovery of γ. We will show how one might recover information
about γ from knowledge of γ|∇u|2 below, but first let us look at a specific example.

3.2 Results

As in the one-dimensional case, data can be collected for only a finite time. Thus, the
exponential stripping method of recovering the Fourier coefficients must be abandoned in
practice. In equations (34) and (35), each infinite series must again be truncated at some
Nj ∈ N. Then, data can be taken at Nj different times, generating Nj linear equations for the
Nj unknown Fourier coefficients. As j grows larger, fewer Fourier terms can be solved for
reliably, so picking the Nj’s differs for every j to be solved.
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Example 3.2.1 (2D Reconstruction):
The table below illustrates a function for γ|∇u|2 that has only low order coefficients. The

vertical values are the j values, while the horizontal values are the k values.

fjk 0 1 2 3 4 5 6 7 8
0 2.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 1.54 1.23 0.00 0.65 1.87 2.13 0.00 0.12
2 0.00 1.45 0.00 0.56 2.43 0.00 0.00 0.00 0.00
3 0.99 0.00 2.06 1.18 0.00 0.37 1.32 0.00 0.00
4 1.93 1.12 0.00 0.78 0.00 0.00 0.00 0.00 0.00
5 0.00 2.04 1.20 0.00 0.00 0.00 0.00 0.00 0.00
6 0.94 0.00 1.60 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 2.81 0.39 1.83 0.00 0.00 0.00 0.00 0.00

The graph of the function follows:

1.0

0.75

0.5 y

0.0

0.25-8

0.25

x

0.5

2

0.75 1.0

12

0.0

22

32

The following table shows the reconstructed fjk from the boundary data for v. The function
v was computed numerically using FEMLAB.
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fjk 0 1 2 3 4 5 6 7 8
0 2.123 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.000 1.542 1.232 0.000 0.651 1.872 2.135 0.002 0.121
2 0.000 1.452 0.000 0.560 2.435 0.003 0.004 0.005 0.002
3 0.992 0.001 2.064 1.180 0.002 0.368 1.323 0.001 0.000
4 1.935 1.117 0.005 0.776 0.004 0.002 0.001 0.000 0.000
5 0.002 2.047 1.197 0.005 0.005 0.001 0.000 0.000 0.000
6 0.938 0.006 1.598 0.002 0.000 0.000 0.000 0.000 0.000
7 0.004 2.807 0.394 1.831 0.000 0.000 0.000 0.000 0.000

Once again, when only low order Fourier coefficients are present, the reconstruction algo-
rithm works quite well. However, the more Fourier coefficients present in γ|∇u|2, the worse
the reconstruction algorithm works. The ill-posedness of the problem is evident, just as it was
in one-dimension. Considering equation (31) and solving for fjk gives

fjk =
(j2 + k2)π2cjk(t)
1− eπ2(j2+k2)t

(37)

Any error in the reconstruction of the cjk(t)’s gets multiplied greatly as j and k increase.
Only the upper left corner of the fjk matrix can be solved for reasonably, and non-negligible
higher order Fourier coefficients of γ|∇u|2 make the reconstruction worse.

3.3 Linearization

We have been unable to develop an algorithm for recovering γ from knowledge of γ|∇u|2,
or indeed, even to prove that knowledge of γ|∇u|2 uniquely determines γ in the most general
setting. However, we have made progress in analyzing a linearized version of the problem,
which we detail below.

Let γ = 1 + δ(x, y), u = u0 + ε(x, y), and f = γ|∇u|2 = |∇u0|2 + h, where u0(x, y)
satisfies Laplace’s equation with Neumann data g. We will consider γ to be a small pertur-
bation of the constant conductivity 1 (that is, δ should be small, say in supremum norm), so
the solution u should be a small perturbation of u0. If we insert γ and u of this form into
equations (23)-(24) and drop all terms higher than first order we obtain

∇ · (γ∇u) = γ∆u +∇γ · ∇u

= (1 + δ)∆(u0 + ε) +∇(1 + δ) · ∇(u0 + ε)
= ∆ε +∇δ · ∇u0 + quadratic terms
= 0 in Ω

for the PDE, while the boundary condition yields

γ
∂u

∂n
= (1 + δ)

∂(u0 + ε)
∂n

= g + δg +
∂ε

∂n
+ quadratic terms

= g on ∂Ω

14



and the approximation to f yields

f = γ|∇u|2 in Ω

= (1 + δ)(|∇u0|2 + 2∇u0 · ε + |∇ε|2)
= |∇u0|2 + δ|∇u0|2 + 2∇u0 · ∇ε + quadratic terms.

= |∇u0|2 + h.

Dropping the (formally) small quadratic terms and simplifying these results leads to the fol-
lowing problem in which the relation between ε and δ has been linearized,

∆ε = −∇u0 · ∇δ in Ω (38)
∂ε

∂n
= −δg on ∂Ω (39)

δ|∇u0|2 + 2∇u0 · ∇ε = h in Ω (40)

We also assume that u0 shares the zero line integral condition (25) of u, so that
∫

∂Ω
ε(x, y) ds =

∫

∂Ω
u(x, y) ds−

∫

∂Ω
u0(x, y) ds = 0. (41)

For the linearized forward problem we consider ε as the unknown, δ, g, and h as given (note
u0 is determine by g). The corresponding inverse problem is to determine δ from knowledge
of ε, g and h.

We shall restrict our attention to the special case where Ω = (0, 1)2, δ ≡ 0 on ∂Ω, and
g is chosen such that u0(x, y) = x in Ω (thus g corresponds to input flux −1 on the left, 1
on the right, zero at the top and bottom of Ω.) The condition δ = 0 on ∂Ω models the case
in which the interior damage lies strictly away from the boundary. Equations (38)-(40) then
become

∆ε = −∂δ

∂x
in Ω (42)

∂ε

∂n
= −δg on ∂Ω (43)

δ + 2
∂ε

∂x
= h in Ω. (44)

If we use (44) to solve for δ and insert this into (42) we find that ε satisfies

∂2ε

∂y2
− ∂2ε

∂x2
= −∂h

∂x
(45)

in Ω. Additionally, since δ vanishes on ∂Ω, from (42) we find that ∂ε
∂n must also vanish on

∂Ω. We may now state a uniqueness theorem for equations (42)-(44).

Theorem 3.2 (Uniqueness Theorem for the Linearized Problem):
Let g be chosen such that u0(x) = x in Ω = (0, 1)2 and suppose δ ≡ 0 on ∂Ω. Then
knowledge of h in Ω uniquely determines ε and δ in Ω.

15



Proof. We shall demonstrate that if h vanishes everywhere in Ω then ε and δ vanish every-
where. The linearity of ε and δ in (42)-(44) then implies that any solution to the linearized
problem must be unique. Note that since δ vanishes on ∂Ω, from the assumption h ≡ 0 we
see from equation (43) that εx must also vanish on ∂Ω (at least if ε is sufficiently smooth).

Let E(y) denote the ’energy integral’

E(y) =
1
2

∫ 1

0

(
ε2x(x, y) + ε2y(x, y)

)
dx.

Since h ≡ 0 equation (45) forces

E ′(y) =
∫ 1

0
(εxεxy + εyεyy) dx

=
∫ 1

0
(εx(εyx) + εy(εxx)) dx

=
∫ 1

0
(εxεy)x dx

= εxεy

∣∣∣∣
x=1

x=0

= 0,

since εx = ± ∂ε
∂n vanishes for x = 0 and x = 1. Thus E(y) is constant. Additionally,

E(0) =
1
2

∫ 1

0
(εx(x, 0)2 + εy(x, 0)2) dx = 0

since εx and εy vanish for y = 0. Thus both partial derivatives of ε must vanish everywhere
and ε(x, y) must be a constant. Equation (41) then forces ε(x, y) ≡ 0 and δ(x, y) = −2εx ≡
0.

It’s worth noting that uniqueness may fail without the assumption the δ ≡ 0 on ∂Ω.
Consider, for example,

ε(x, y) = cos(πx) cos(πy)

with
δ = −2εx = 2π sin(πx) cos(πy).

It’s easy to check that (with h = 0 and g as above) these choices satisfy equations (42)-(44).

3.4 Reconstruction in the Linearized Problem

We again consider the special case from above, in which g is chosen so that u0(x, y) = x,
and assume δ ≡ 0 on ∂Ω. In this case the solution to (42)-(43) can be written out via a Fourier
expansion (note (43) is just ∂ε

∂n = 0) and is in fact

ε(x, y) = − 1
π2

∑

j,k≥0

qjk

j2 + k2
cos(jπx) cos(kπy) (46)
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where q00 = 0 (since −δx must integrate to zero over Ω if ∂ε
∂n ≡ 0) and

qj0 = −2
∫ 1

0

∫ 1

0
δx(x, y) cos(jπx) dx dy = −2jπ

∫ 1

0

∫ 1

0
δ(x, y) sin(jπx) dx dy

q0k = −2
∫ 1

0

∫ 1

0
δx(x, y) cos(kπy) dx dy = 0

qjk = −4
∫ 1

0

∫ 1

0
δx(x, y) cos(jπx) cos(kπy) dx dy = −4jπ

∫ 1

0

∫ 1

0
δ(x, y) sin(jπx) cos(kπy) dx dy

all follow from integration by parts. The qjk are of course the Fourier cosine coefficients for
−δx, that is,

−δx(x, y) =
∑

j,k≥0

qjk cos(jπx) cos(kπy)

from which we find (integrate in x and use δ = 0 on the boundary)

δ(x, y) = −
∑

j>0,k≥0

qjk

jπ
sin(jπx) cos(kπy) (47)

With (46) in hand we can use (44). In particular, expand h(x, y) into a Fourier sine/cosine
series, as

h(x, y) =
∑

j>0,k≥0

hjk sin(jπx) cos(kπy)

where as usual (note j > 0, while k ≥ 0, so hj0 is a special case)

hj0 = 2
∫ 1

0

∫ 1

0
h(x, y) sin(jπx) dx dy

hjk = 4
∫ 1

0

∫ 1

0
h(x, y) sin(jπx) cos(kπy) dx dy.

Equation (44) becomes, after matching like coefficients,

−qjk

jπ
+ 2

j

π

qjk

j2 + k2
= hjk

or after simplifying
(j2 − k2)qjk

jπ(j2 + k2)
= hjk. (48)

We can solve for qjk as

qjk = jπ
j2 + k2

j2 − k2
hjk, (49)

at least if j 6= k. The case j = k is dealt with below.
In short, once we know the hjk we can solve for the qjk and then use (47) to reconstruct.

The Fourier sin(jπx) cos(kπy) coefficients for δ are then given by

δjk = −j2 + k2

j2 − k2
hjk. (50)
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From equation (48) it seems that the function h does not encode all of the information
necessary to recover q, since hjj = 0 for all j regardless of the value of qjj . Thus uniqueness
may not hold for the linearized problem. Nonetheless, we can recover the off-diagonal coef-
ficients. This is an issue that needs further exploration, perhaps by next year’s REU group.

4 Further Work

Ideas: Better, stabler procedures for exponential stripping. Reconstruction of diagonal
coefficients (more generally, reconstruction for the linearized 2D problem), and generaliza-
tion of 2D reconstruction and uniqueness to other input fluxes for g, more general domains,
3D. Also, computational examples that put the whole thing together (recover γ|∇u|2 from
thermal data, then use linearized reconstruction to get γ). Also, explore the full nonlinear
problem in 2D. Apply to more specific types of damage, e.g., cracks. Add in possibility that
thermal properties change too.
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