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Abstract. In certain situations it is useful to identify an unknown sample of metal without
contact or visual inspection. We wish to do this by inducing a current in a coil and placing
the sample in the resulting magnetic field. For the special case in which the sample is an
infinite slab, we have a model that gives the change in impedance of the coil based on the
properties of the sample. In this paper we analyze the inverse problem of finding the metal
properties from impedance measurements over a wide range of frequencies.

1. Introduction

In technology such as metal detectors, it is useful to be able to identify a sample of metal
without contact or visual inspection. Such technology already exists, but our ultimate goal
is to find ways of improving the efficiency of current methods. These methods usually involve
inducing an alternating current in a coil of wire and thus creating electric and magnetic fields.
When an unknown metal is introduced close to the coil, these fields are distorted, producing
a measurable change in the impedance of the coil. A model for the change in impedance
at any given driving frequency is developed in [1] (pages 78-79); this impedance change
depends on various material and geometric properties of the sample. Our goal is to solve
the corresponding inverse problem, that is, to use measured impedance changes at various
frequencies to deduce certain sample properties, specifically: lift-off (distance from the coil),
conductivity, permeability, and thickness. In this paper we develop certain analytical results
and numerical methods for obtaining these parameters.

2. Model

The general model we consider is a single coil over an infinite sheet with L layers of
potentially different metals, as shown on the left in Figure 1; on the right is a 3D depiction
of the setup with L = 4 layers, the bottom layer in this case being air. Note the Lth layer
is assumed to extend to z = −∞, and the layers are in fact assumed to be infinite slabs,
that is, they extend to ∞ in the x and y directions. The parameters µ̃t and σt denote the
relative permeability and conductivity of the tth layer, while −dt is the z coordinate of the
interface between layers t and t+ 1 (so that dt is the depth of the interface below the sample
top surface at z = 0.)

A general formula for the change in impedance (deviation from the impedance in free
space or air) experienced by the coil at driving frequency ω is developed in [1], pages 78-79,
and is

(1) ∆Z(ω) = K

∫ ∞
0

I2(a)

a6
e−2a`1(1− e−a`2)2 V1

U1

da.

The various quantities that appear on the right in equation (1) are as follows. First, the
quantity a is the variable of integration. The quantity `1 is the lift-off (the distance between
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Figure 1. Diagrams of coil and layered structure.

the object and the coil) and `2 is the length of the coil, both as illustrated in Figure 1. The
coefficient K is defined as

(2) K =
iπωµ0N

2

(r2 − r1)2`2
2

and contains ω, which is the frequency of the alternating current in the coil, while µ0 denotes
the permeability of free space, N denotes is the number of turns in the coil, and r1 and r2

denote the inner and outer radii of the coil, respectively (refer to Figure 1). The function I
is defined by

I(a) =

∫ ar2

ar1

xJ1(x) dx

where J1(x) is the first order Bessel function of the first kind. Finally, the quantities U1

and V1, both functions of the integration variable a, are obtained from a recursively defined
sequence of the form

Ut =

(
λt−1

µ̃t−1

− λt
µ̃t

)
e−2λtdtVt+1 +

(
λt−1

µ̃t−1

+
λt
µ̃t

)
Ut+1

Vt =

(
λt−1

µ̃t−1

+
λt
µ̃t

)
e−2λtdtVt+1 +

(
λt−1

µ̃t−1

− λt
µ̃t

)
Ut+1

The iteration ranges from t = L− 1 down to t = 1 where

λt =
√
a2 + iωµ0µ̃tσt,

but with provision that (
λt−1

µ̃t−1

)
t=1

= a

and with “initial” values

UL =
λL−1

µ̃L−1

+
λL
µ̃L

VL =
λL−1

µ̃L−1

− λL
µ̃L
.
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In this paper we focus on the case with only one material layer of finite thickness in the
structure, backed by air or free space. In this case L = 2, σ2 = 0, µ̃2 = 1, and the formulae
above become

V1 =

(
a2 − λ2

1

µ̃2
1

)
(1− e−2λ1d1)

U1 =

(
a+

λ1

µ̃1

)2

−
(
a− λ1

µ̃1

)2

e−2λ1d1

λ1 =
√
a2 + iωµ0µ̃1σ1.

Instead of solving the direct problem of calculating the change in impedance based on the
properties of the metal, we approach the inverse problem of solving for µ̃1, σ1, d1, and `1

using measurements for ∆Z at various frequencies ω.

3. Analyticity of ∆Z and Uniqueness

Let us consider the quantity ∆(z) to be a function solely of Ω, with the parameters µ̃1,
σ1, d1, and `1 fixed. We show below that ∆Z(ω) a real-analytic function, that is, possesses a
convergent power series expansion for each ω > 0. From this we can deduce that knowledge
of ∆Z(ω) for any range of ω uniquely determines ∆Z(ω) for all ω > 0, and obtain partial
uniqueness results for the inverse problem. The result also has implications for reconstruction
of the unknown quantities.

The following theorem is proved in [2].

Theorem 1. Suppose φ(z, t) is a continuous function of t, A ≤ t ≤ B, for fixed z and an
analytic function of z ∈ D for fixed t. Then

f(z) =

∫ B

A

φ(z, t)dt

is analytic in D.

We should note that the Theorem extends in a straightforward manner to the unbounded
case in which, for example, B =∞ if φ decays sufficiently rapidly at t =∞. Specifically, if
φ(z, t) = O(1/t2) the transformation t = tan(u) can be used to reduce this unbounded case
to that stated in the theorem.

It is not hard to see that ∆Z(ω) may more generally be considered as a function of a
complex variable ω with Re(ω) > 0. This is because then Re(λ1) > 0 and the integral
defining ∆Z(ω) remains convergent. Indeed, one can check that the integrand in (1) decays
rapidly as a function of a, as O(e−2a`1). We can use Theorem 1 to show

Result 1. The function ∆Z(ω) is analytic as a function of ω for Re(ω) > 0.

Proof. Let φ(ω, a) = I2(a)
a6

e−2a`1(1−e−a`2)2 V1
U1

. We begin by showing that φ(ω, a) is continuous
with respect to a for 0 ≤ a <∞. Since φ is mainly composed of well known continuous func-

tions, we consider only the continuity of I2(a)
a6

(in particular, near a = 0) and the possibility
of U1 being zero. Note that d1 is positive.

The Bessel function J1 can be represented as the following Taylor series with interval of
convergence −∞ < x <∞,

J1(x) =
∞∑
k=0

(−1)k

22k+1k!(k + 1)!
x2k+1.
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Integrating term-by-term is permitted and after simplifying, we find that

I2(a)

a6
=
∞∑
k=0

(
(−1)k(r2k+3

2 − r2k+3
1 )

22k+1k!(k + 1)!(2k + 3)

)2

a4k,

which we can see is a continuous function of a for 0 ≤ a <∞.
Next, we consider the continuity of V1/U1 for a > 0. Note that it is clear that U1 and V1

are themselves continuous as functions of a. It’s easy to check that lima→0 V1/U1 = −1, so
that V1/U1 is continuous in some neighborhood of zero. To demonstrate the continuity of
V1/U1 for a > 0 we will shows that U1 6= 0 when a > 0. To this end, suppose that U1 = 0.
This means that

(3)
(a+ λ1

µ̃1
)2

(a− λ1
µ̃1

)2
= e−2λ1d1 .

We will show that the left side of (3) is always greater than or equal to 1, while the right side
is always strictly less than 1, and so equation (3) can never be satisfied, and hence U1 6= 0
for any a > 0.

We first examine the right side of (3). We know λ1 =
√
a2 + iq where q is some positive

real number. A straightforward computation shows that |λ1| = (a4+q2)1/4 > 0, and the point
λ2

1 = a2 + iq has complex argument 0 < θ < π/2. Then λ1 has an argument 0 < θ/2 < π/4,
and so lies in the first quadrant. Let us write λ1 = c1 + ic2. Elementary geometry shows
that

c1 = |λ1| cos(arg(λ1)) = (a4 + q2)1/4 cos

(
arctan(q/a2)

2

)
=

(a4 + q2)1/4

√
2

√
1 +

1√
q2/a4 + 1

=
1

2
(
√
a4 + q2 + a2)

≥ 1

2
(a2 + a2)

= a2.

where we make use of cos(arctan(α)) = 1/
√

1 + α2 and the half angle formula cos(β/2) =√
(1 + cos(β))/2. Thus c1 ≥ a2 > 0. Observe:

|e−2λ1d1| = |e−2c1d1||e−2ic2d1 |
= e−2c1d1

≤ e−2ad1

< 1.(4)

Now we examine the left side of (3). Observe that∣∣∣∣(a+
λ1

µ̃1

)2∣∣∣∣ =

(
a+

c1

µ̃1

)2

+
c2

2

µ̃2
1

and ∣∣∣∣(a− λ1

µ̃1

)2∣∣∣∣ =

(
a− c1

µ̃1

)2

+
c2

2

µ̃2
1

.
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Since c1 > 0 (and a > 0, µ̃1 > 0) we clearly have

(5)

∣∣∣∣∣
(
a+ λ1

µ̃1

)2(
a− λ1

µ̃1

)2

∣∣∣∣∣ ≥ 1.

Inequalities (4) and (5) clearly show that equation (3) can never be satisfied for any a > 0,
that is, U1 6= 0 for 0 < a <∞. Therefore, φ is continuous with respect to a.

Since φ(ω, a) is composed of products, sums, and quotients of functions that are analytic
with respect to ω it is clear that φ(ω, a) is analytic with respect to ω. In view of Theorem
1 the function ∆Z(ω) is analytic for 0 < ω <∞. �

Now we know that ∆Z is analytic in ω (and real-analytic if we confine ω to the real axis),
we are justified in using its series expansion. Also, an real-analytic function is uniquely
determined on its domain of definition if its values are known on an open interval within
that domain, as per the following theorem.

Theorem 2. Let f1 and f2 be analytic functions on domains Ω1 and Ω2, respectively, and
suppose that the intersection Ω1 ∩ Ω2 is not empty and that f1 = f2 on Ω1 ∩ Ω2. Then f2

is called an analytic continuation of f1 to Ω2, and vice versa. Moreover, if it exists, the
analytic continuation of f1 to Ω2 is unique.[3]

From this we may immediately deduce

Theorem 3. Let I be any open interval on the real line. The data ∆Z(ω) for ω ∈ I uniquely
determines ∆Z(ω) for all ω > 0.

Of course the actual extrapolation of an analytic function to a larger domain is a very
ill-posed problem, but Theorem 3 shows that if we have measurements of ∆Z(ω) on any
interval, the information therein contained is equivalent to that obtained from knowledge of
∆Z(ω) for all positive ω.

4. Parameter Identification

Lift-off. In order to approximate the distance between the metal sample and coil, we ex-

amine the high frequency limit of ∆Z(ω)
K

. When we look at this limit, we find, after a bit of
analysis, that

lim
ω→∞

∆Z(ω)

K
=

∫ ∞
0

I2(a)

a6
e−2a`1(1− e−a`2)2(−1) da.

We can then approximate ∆Z(ω) as ∆Z̃(ω) = K
∫∞

0
I2(a)
a6

e−2a`1(1 − e−a`2)2(−1) da as long
as ω is sufficiently large. This approximation is advantageous because it contains only one
unknown parameter, the lift-off `1. Also, it’s easy to see that for any fixed value of ω the
quantity ∆Z̃(ω) is a strictly increasing function of `1, and so `1 is uniquely determined
by this limit. Thus we can use a bisection method to find a zero with respect to `1 of
f(x) = ∆Z(ω0)−∆Z̃(ω0) where ω0 is sufficiently large (on the order of 107 for the example
we have considered).
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Figure 2. Error for sheet of silver

Conductivity. In order to find σ1, we take the first two terms in the series expansion of
V1
U1

with respect to large ω, and use this to approximate the integral. The first term is −1,
which we already know from our approximation to find the lift-off. The second term in this

expansion is −2i
√
iµ0µ̃1σ1a
µ0σ1

1√
ω

. In what follows we assume that µ̃1 ≈ 1 (thus excluding strongly

magnetic materials). When this assumption holds,

∆Z(ω)

K
≈
∫ ∞

0

I2(a)

a6
e−2a`1(1− e−a`2)2

(
−1− 2i

√
iµ0σ1a

µ0σ1

1√
ω

)
da.

Using work from the previous section, we see that

∆Z(ω)

K
− ∆Z̃

K
≈
∫∞

0
I2(a)
a6

e−2a`1(1− e−a`2)2
(
−2i

√
iµ0σ1a
µ0σ1

1√
ω

)
da

= 1

σ
1/2
1

∫∞
0

I2(a)
a6

e−2a`1(1− e−a`2)2
(
−2i

√
iµ0a
µ0

1√
ω

)
da

which now only contains the unknown parameter of σ1. Also, we see clearly that when the
limit is taken, σ1 is uniquely determined because it is a constant with respect to the variable
of integration. We again use a bisection method to accurately determine σ1, assuming µ̃1 ≈ 1
and ω is sufficiently large. In the case where our assumption that µ̃1 ≈ 1 fails, we can use
the algorithm in the following section to find σ1, d1, and µ̃1 at the same time, but it becomes
far less accurate when a third parameter is added.

Thickness and Relative Permeability. One method we use for finding the remaining pa-
rameters d1and µ̃1 is the Levenberg-Marquardt-Fletcher (LMF) algorithm, which minimizes

φ(d1, µ̃1) =
∑
j

|∆Z(d1, µ̃1, ωj)−∆Zj|2

where each Zj is the change in impedance measured at different frequencies ωj. The algorithm
typically converges to the correct answer (within some tolerance) with an initial guess that
is sufficiently close to the actual parameters in question. Since these parameters have a
fairly small range of values that they can take on (0 < d1 ≤ 0.009 and 0.8 ≤ µ̃1 ≤ 1.2,
approximately), finding an initial guess for which the algorithm converges is reasonably
easy. This method is able to calculate the values of d1and µ̃1 to within .01% of their true
values (see Figure 2).
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An alternate way to find thickness and relative permeability is to use a low ω approxima-
tion for ∆Z(ω), taking the first two terms in the series expansion of V1

U1
and assuming that

µ̃1 ≈ 1. In this case

∆Z(ω)

K
≈
∫ ∞

0

I2(a)

a6
e−2a`1(1− e−a`2)2

(
1

4

(
ie−2ad1µ0σ1 − iµ0σ1

)
a2

ω

)
da,

which only contains the unknown d1. We may again use a bisection method to calculate
d1, assuming ω is small (on the order of 10−3 to 10−7). We then have three out of four
parameters and can use bisection on our original formula for ∆Z to find µ̃1. So far this
method is slightly less accurate than the LMF approximation but shows promise.

5. Results

For an infinite, single-layer sheet of metal, we are able to determine the lift-off, thickness,
relative permeability, and conductivity to a reasonable degree of accuracy. The parameters
we use in the Table 1 are for a sheet of copper, and those in Table 2 are for a sheet of silver.
In each case we use a range of frequencies from ω = 1 to ω = 107, corresponding to 0.159
Hz to 1.59 × 106 Hz. The parameters chosen for the coil are `2 = 2.3mm, r1 = 5.35mm,
r2 = 7.7mm, and N = 100. The initial guess given to the LMF algorithm was d1 = 5mm
and µ̃1 = 1. In Table 1, the lift-off and thickness are given in units of meters, conductivity
is given in siemens, and relative permeability is unitless. The simulated data is noiseless.

ω ∆Z
1 5.6329e− 09− 1.0275e− 07i
10 5.6302e− 07− 1.0342e− 06i
102 5.4907e− 05− 1.6395e− 05i
103 0.0032− 0.0024i
104 0.0199− 0.0821i
105 0.0709− 0.9533i
106 0.2391− 10.0640i
107 7.7172e− 01− 1.0232e + 02i

Parameter Exact Value Estimated Value % Error
`1 0.0051 0.0051 0.44
d1 0.0017 0.0017 0.01
µ̃1 0.999994 1.0000 0.001
σ1 5.96 · 107 5.959 · 107 0.01
Table 1. Data and results for a copper sheet

6. Future Work

For future work, we would like to improve our numerical methods for the single layer case
so that they are still accurate when relative permeability is not close to one. This might be
accomplished by considering more terms in the expansion of V1/U1 at ω =∞. Additionally,
more information concerning the thickness parameter d1 or other parameters may be encoded
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ω ∆Z
1 2.4562e− 07− 5.8407e− 09i
10 2.2895e− 05− 4.6141e− 06i
102 7.9415e− 04− 9.7006e− 04i
103 0.0019− 0.0177i
104 0.0057− 0.1850i
105 0.0185− 1.8910i
106 0.0591− 19.0381i
107 1.8739e− 01− 1.9079e + 02i

Parameter Exact Value Estimated Value % Error
`1 0.0034 0.0034 0.0740
d1 0.0005 0.00049 0.0015
µ̃1 0.99998 1.0000 0.0020
σ1 6.2900 · 109 6.2901 · 109 0.0017
Table 2. Data and results for a silver sheet

in an expansion of V1/U1 for low frequencies. More generally, it may also be possible to use
our result that ∆Z is analytic to extrapolate ∆Z to the whole real line given data concerning
∆Z on an open interval. After this, we would also like to see if our methods will extend to
the general case with multiple layers of varying types of metal. Finally, in order to make
our work more applicable, we like to work with a model for a finite structure rather than
an infinite sheet (a disc shape, for example). On the theoretical side of our problem, we
would like to obtain more rigorous uniqueness results for the inverse problem, and perform
a stability analysis for typical realistic configurations.
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