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Abstract: Recent developments in cloaking, the ability to selec-
tively bend electromagnetic waves so as to render an object invisible,
have been abundant. Based on cloaking principles, we will describe sev-
eral ways to mathematically disguise objects in the context of electrical
impedance imaging. Through the use of a change-of-variables scheme
we show how one can make an object appear enlarged, translated, or
rotated by surrounding it with a suitable “metamaterial,” a man-made
material that selectively redirects current. Analysis of eigenvectors and
eigenvalues, which describe how current flows, follow. We prove that
in order to disguise an object, a metamaterial must encompass both
the subdomain and its disguised version, and discuss the consequences.
Finally, we briefly explore how electricity is just a springboard to po-
tential applications.

1. Introduction

Popularized by the Star Trek series as a Romulan cover-up, cloaking
has been recently seen on screen in both The Lord of the Rings and
Harry Potter movies. But this science fiction is now being transformed
into science fact. The scientific and mathematical communities are
busy describing and trying to build different types of cloaks; for a
general overview, see Greenleaf, et. al [4].

Instead of the principles of cloaking using the full Maxwell’s equa-
tions for electromagnetic energy, we’ll stick to the simpler equations
that govern “impedance imaging,”, described below.

To begin, we first define a bit of terminology. There are two types
of electrical conductors that we will be considering: isotropic and
anisotropic. An anisotropic conductor has directionally dependent
properties present in the material—the material conducts electricity
more easily in some directions that other. An isotropic conductor has
no directional properties. A material is homogenous if the physical
properties are the same at each point in space, and nonhomogeneous
otherwise.
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We will use the following model for the simplest case, steady-state
electrical conduction in an isotropic object Ω:

J = γE, (1.1)

where J denotes the current flux in Ω, E the electric field and γ is the
conductivity conductivity of the object. If the material is homogeneous
and isotropic, γ is a non-negative constant. However, if the material
is nonhomogeneous, γ is a (scalar-valued) function of position. As γ
grows, the electrical current flow J increases, for any fixed E. Since
E = −∇u, where u is electrical potential in the object, equation (1.1)
becomes

J = −γ∇u.

Due to conservation of electrical charge we must have ∇ · J = 0 in Ω,
that is, ∇ · γ∇u = 0, which reduces to Laplace’s equation, ∆u = 0,
when γ is constant.

For the anisotropic conduction case, there may be preferred direc-
tions for current flow at any given point in the object. For this reason,
γ cannot be taken as a scalar. In this situation, there are maximum and
minimum directions for the conductivity, and a common model is in
which the corresponding directions are orthogonal to each other. When
taking all of these conditions into account, equation (1.1) becomes

J = σE

where σ is a symmetric positive-definite matrix that may still depend
on position. Note the isotropic case can be subsumed into this case, as
σ = γI where I is the identity matrix. See [3] for more on the derivation
of the model for anisotropic conduction.

A metamaterial is an essential component of cloaking. This type of
man-made material is macroscopically composed of at least two distinct
materials that extend the range of electromagnetic patterns because
the metamaterial cannot be found in nature. In fact, we construct
anisotropic conductors with metamaterial that redirect the electrical
energy around an object to be cloaked or disguised, which makes it
appear in a different form to an outside observer. This is the essential
property which we exploit throughout this paper to construct disguises
and cloaks.

2. Impedance Imaging and the Forward Problem

To image the interior of an object, one can use a technique called
Electrical Impedance Tomography (EIT). EIT involves applying an
electrical current through electrodes attached to the boundary of an
object. This induces an electric potential throughout the object, and
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current flows in accordance with equation (1.1) (or its anisotropic coun-
terpart J = σE.) The value of γ (or σ) alters the flow of current, and
hence the value of the potential u on the exterior boundary of the
object. One can then measure this boundary potential. By using this
information—applied currents and measured boundary potentials—one
can, at least in the isotropic conduction case, form an image of the in-
terior electrical conductivity of the object. This technique has already
found use in medical imaging; see [3] for images of a cross-section of
the human torso obtained using this technology.

Let us quantify the ideas above a bit more carefully. Let Ω be a
bounded, open connected set, or domain, in R2, though the techniques
generalize to Rn. We will use ∂Ω to represent the boundary of Ω. To
solve the partial differential equations used in impedance imaging, we
need some boundary conditions. These are usually either Dirichlet
or Neumann. For Dirichlet boundary conditions, an input potential
is given on ∂Ω. For Neumann boundary conditions, we specify an in-
put current on ∂Ω. The latter is the type of boundary data we will
assume—we specify the input current on ∂Ω. Suppose the region Ω
has an anisotropic (possibly nonhomogeneous) conductivity σ.

First we will consider the general problem where Ω is some anisotropic
conductive material with conductivity σ. We apply an input current
flux g to ∂Ω. Then as remarked above, the resulting potential u in Ω
satisfies

∇ · σ∇u = 0 in Ω (2.1)

with the Neumann boundary condition

(σ∇u) · n = g on ∂Ω. (2.2)

Equations (2.1)-(2.2) determine the function u only up to an additive
constant (see, e.g., [6]), but a unique solution can be obtained by, for ex-
ample, adding the additional condition

∫
∂Ω

u ds = 0. When σ is known
and g specified, equations (2.1)-(2.2) comprise the forward problem, a
standard boundary value problem to be solved for the function u.

EIT is an example of an inverse problem: Here σ is considered un-
known; we inject a known current flux g into ∂Ω, measure the solution
u to equations (2.1)-(2.2), and from this information (or more likely,
many inputs currents and measured potentials) try to deduce σ. As
mentioned above, in the case that σ is actually known to be isotropic
(σ = γI) effective algorithms for estimating σ from this type of input-
output data exist. In essence, one case use input current-output voltage
data to image the interior conductivity of an object.
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Figure 1. General mapping to anticloak, disguising D1

as D2

Our goal is to hide, or more generally “disguise” an object inside Ω,
with respect to EIT. For the moment, suppose the object is a subdo-
main D ⊆ Ω such that the inward current flux satisfies:

∂u

∂n
= 0 on ∂D. (2.3)

Thus D is an perfectly electrically insulating (non-conductive) subdo-
main that we can cloak or disguise.

If, for simplicity, we let γ = 1, then 2.1 becomes:

∆u = 0 in Ω (2.4)

and 2.2 becomes:
∂u

∂n
= g on ∂Ω. (2.5)

We additionally specify a normalization
∫

∂Ω
u ds = 0 to nail down a

unique solution to (2.4) and (2.5).
We will consider the case γ = 1 in Ω as the “base case,”, that is, as

the conductivity that an observer using EIT assumes exists inside Ω.
Our goal is to surround D with a metamaterial—mathematically, an
anisotropic conductor—that redirects current so as to make D appear
differently. We want to use cloaking to disguise D, so as to make D look
like something else, a new process which we call anticloaking (Figure
1)

3. Enlargements

3.1. Introduction. To begin our study of cloaking, let Ω be a bounded
open region in R2 and D1 a subdomain of Ω with D1 ⊂ Ω. Suppose that
Ω \D1 has “background” conductivity γ ≡ 1. Let D2 be a subdomain
of Ω with D2 ⊂ Ω. Let x = (x1, x2) denote rectangular coordinates on
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Ω \D1 and y = (y1, y2) rectangular coordinates on Ω \D2. Let Φ be a

C2 mapping from Ω \D1 to Ω \D2 with C2 inverse, and DΦ invertible

on Ω \D1. Suppose also that Φ maps ∂Ω to ∂Ω and ∂D1 to ∂D2. Let
u be the solution to equations (2.3), (2.4), and (2.5). Finally, define a

function v on Ω \D2 as v(y) = u(Φ−1(y)). A standard computation,
shown for example in [3], demonstrates the following lemma.

Lemma 1. Under the conditions above the function v satisfies equa-
tions (2.1) and (2.2) with the condition (σ∇u) · n = 0 on ∂D2, where

σ(y) =
(DΦ(x))(DΦ(x))T

det(DΦ(x))

with x = Φ−1(y).

We now show how to use Lemma 1 to make an insulating circular
region D = Bρ(0) (a ball of radius ρ centered at the origin) appear
as a ball of radius 1/2 to an observer using EIT, in the case that Ω
is the open unit disc in R2, though the principles are the same for
every domain in R2 (Figure 2.) We use x = (x1, x2) for rectangular

coordinates and ‖x‖ =
√

x2
1 + x2

2 for the norm of x. To do this, we
can apply a transformation Φ as above, a “push forward” map, to
artificially enlarge D. Specifically, define

Φ(x) =
Ψ(r)x

r
, where ‖x‖ = r,

for x ∈ Ω \ B1/2(0), where as above Φ and Φ−1 are invertible C2 map-
pings such that the Jacobian, DΦ, is nonsingular on Ω \ B1/2(0). We
suppose that Φ maps Ω \B1/2(0) to Ω \D with Φ the identity map in
a neighborhood of ∂Ω, and Φ maps the circle of radius 1/2 centered at
the origin to ∂D.

Such a mapping can be obtained by taking

Ψ(r) =





ρ +
r− 1

2
1
2
+δ

1
2
≤ x ≤ 1

2
+ δ,

h(r) 1
2

+ δ < x < 1
2

+ 2δ,

r 1
2

+ 2δ ≤ x ≤ 1.

for δ ∈ (0, 1/4) and where h(r) is a suitable smooth function to connect
the two regions. Let y = Φ(x) ∈ Ω \ D (with y = (y1, y2)) for x ∈
Ω \B1/2(0) and set s = ‖y‖.

Let u(x) be the potential in Ω \ D and v be defined by let u(x) =
v(φ(x)) (that is, v(y) = u(Φ−1(y)). In a neighborhood of the boundary
∂Ω, 1

2
+ 2δ < r < 1, we have r = s, so the potential functions u and

v are equal. Under equation (2.4) and the definition of v, defined on
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Figure 2. φ makes a circle of radius ρ appear like a
circle of 1

2
by redirecting the electrical current

the image of Φ, from Lemma 1 we conclude that v satisfies the partial
differential equation (2.1) in Ω \D with

σ(y) =
DΦDΦT

|det(DΦ)| . (3.1)

Here σ(y) is a matrix that physically represents an anisotropic conduc-
tivity, for σ is clearly symmetric and positive-definite. Elsewhere we
check that the Neumann boundary condition ∂v

∂n
= 0 is satisfied, since

∂v

∂n
= −∂v

∂s

∣∣∣∣
s=ρ

= −∂r

∂s

∂u

∂r

∣∣∣∣
r= 1

2

= (
1

2
+ δ)

∂u

∂r

∣∣∣∣
r= 1

2

= 0.

These calculations are independent of the input current, thus this
anisotropic conductivity makes D look like a ball of radius 1

2
for any

input current g, making it an ideal disguise.

3.2. Eigenvalues and Eigenvectors. We can better understand the
anisotropic conductivity matrix σ through its eigenvectors and eigen-
values. The eigenvectors of σ represent the directions of maximum and
minimum conduction and the eigenvalues represent the magnitude of
the conductivity in these directions. Since conductivity indicates a ma-
terial’s affinity to conduct electric current, by knowing these values, we
can tell where and how much current will flow in all directions.
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Given that σ is symmetric positive-definite, its eigenvectors are or-
thogonal and its eigenvalues are positive. These can be easily computed
from DΦ. A straightforward computation shows that

DΦ =

(
Ψ′(r)

r2
− Ψ(r)

r3

)(
x2

1 x1x2

x1x2 x2
2

)
+

(
Ψ(r)

r

)
I,

where I is the identity matrix. Since DΦ is clearly symmetric, from

(3.1) we have σ(y) = DΦ2

|det(DΦ)| , and the eigenvectors for

(
x2

1 x1x2

x1x2 x2
2

)

are

(
x1

x2

)
and

(−x2

x1

)
with corresponding eigenvalues ‖x‖ and 0. These

are also the eigenvectors for σ, but with shifted eigenvalues

γ1 =
rΨ′(r)
Ψ(r)

γ2 =
Ψ(r)

rΨ′(r)
.

If we look at the innermost region, 1
2
≤ r ≤ 1

2
+ δ, we find

γ1 =
r

ρ(1
2

+ δ) + r − 1
2

and

γ2 =
ρ(1

2
+ δ) + r − 1

2

r
=

1

γ1

.

These eigenvalues, γ1 and γ2, correspond to orthogonal eigenvectors in
the outward normal (v1) and tangential (v2) directions respectively for
1
2
≤ r ≤ 1

2
+ δ. When r = 1

2
,

γ1 =
1

2ρ(1
2

+ δ)

which approaches ∞ when ρ approaches 0+ and

γ2 = 2ρ(
1

2
+ δ)

which approaches 0 when ρ approaches 0+. Thus, the maximal con-
ductivity is in the outward normal direction and the minimal conduc-
tivity is in the tangential direction. The eigenvalues for the region
1
2

+ 2δ ≤ r ≤ 1 are γ1 = γ2 = 1, since in this region Φ is the identity
map.

We can also examine the eigenvalues for σ in terms of s, where s =
Ψ(r). By simple algebra, r = (s−ρ)(1

2
+δ)+ 1

2
. For the region ρ ≤ s ≤ 1

2
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(corresponding to 1
2
≤ r ≤ 1

2
+ δ),

γ1 =
rΨ′(r)
Ψ(r)

=
(s− ρ)(1

2
+ δ) + 1

2

(1
2

+ δ)s

γ2 =
1

γ1

=
(1

2
+ δ)s

(s− ρ)(1
2

+ δ) + 1
2

When s = ρ,

γ1 =
1

2ρ(1
2

+ δ)

γ2 = 2ρ(
1

2
+ δ),

which were the same values found previously for r = 1
2
. When s = 1

2
,

γ1 =
(1

2
− ρ)(1

2
+ δ) + 1

2

(1
2

+ δ)

γ2 =
(1

2
+ δ)

2(1
2
− ρ)(1

2
+ δ) + 1

2

,

which both approach 1 as δ and ρ approach 0+. Notice that the eigen-
values are dependent on ρ since the map cannot be independent of
ρ. All eigenvalues for a map of this nature will behave similarly in a
neighborhood of the boundary as δ and ρ approach 0.

Some real-world examples of making a small hole appear large in-
clude magnification of an object, like a child using a magnifying glass
to view an ant. Another application includes making an object appear
more threatening, a possible survival mechanism. Currently, physi-
cists around the world are quickly turning mathematical descriptions
of cloaking into real-world objects at an astounding rate.

4. Disguising

Now that we have shown how to make a small hole appear large,
we wanted to explore the possibility of disguising a subdomain of Ω as
something else. Specifically, suppose we have an insulating subdomain
D1 contained in Ω, with background conductivity γ ≡ 1. A current g
is input and we measure the resultant potential u on ∂Ω. Since D1 is
insulating we have ∂u

∂n
= 0 on ∂D1. By “disguising” D1 we mean that

for any given D2 ⊂ Ω we can find a suitable anisotropic conductivity
σ defined on Ω \D2 and a new potential v defined on Ω \D2 such that
v satisfies (2.1), (2.2) and

(σ∇v) · n = 0 on ∂D2.
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(-a,0) (a,0)(-b,0)

(0,c)

Figure 3. Mapping to move D1 to D2 by translation

Moreover, σ = I and v ≡ u in a neighborhood of ∂Ω. In short, we
surround D2 with a suitable anisotropic conductor in such a way that
for any input current g we obtain the same boundary voltage measure-
ments as we do for the domain D1 (surrounded by conductivity γ = 1.)
Since the boundary condition ∂u

∂n
= 0 on ∂D1 becomes (σOyv)·n = 0 on

∂D2 this means we need σ = kI in a neighborhood of ∂D2, where k is a

scalar that may depend on position. So we need (Dφ)T (Dφ)
|det(Dφ)| = kI, which

means (Dφ)T (Dφ) = k̃I. We conclude that Dφ must be an orthogonal
matrix in a neighborhood of ∂D2.

We show how to achieve this in a specific case below.

4.1. Translation. To explore this endeavor, we began with the goal
of translating and rotating a circle of radius R centered at (−a, 0) in a
continuous manner. To start, we wanted to translate our circle a fixed
distance d > 0 inside Ω along the x-axis; refer to Figure 3. If (b, 0)
and (0, c) are bounds to a rectangle that encloses D1 and D2 and lies
within Ω, then the following maps accomplishes this. First, let

q(x, y) = G(x)(x + d, y) + (1−G(x))(x, y)

where

G(x) =





1 −a−R ≤ x ≤ −a + R,
b−x

b−(−a+R)
−a + R < x < b,

b+x
(−a−R+b)

−b < x < −a−R.

Now define

Φ(x, y) = t(y)q(x, y) + (1− t)(x, y),
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where

t(y) =





1 −c ≤ y ≤ c,
c+δ−|y|

δ
|c| < y < |c + δ|,

0 otherwise.

where 0 < δ and (x, c + δ) ∈ Ω for all x ∈ Ω. Notice that the meta-
material here is rectangular in nature and that both D1 and D2 are
completely enclosed.

The general formula for the Jacobian of the translation map, DΦ, is
(

∂q1

∂x
t + (1− t) q1ty + t∂q1

∂y
+ x(1− t)y

t∂q2

∂x
q2ty + t∂q2

∂y
+ y(1− t)y + (1− t)

)

where q(x, y) = (q1(x, y), q2(x, y)). When t = 1, −c ≤ y ≤ c, so the
Jacobian becomes (

dG′(x) + 1 0
0 1

)
,

when t = 0, we get the identity. When we look at the eigenvalues of the

σ = DΦ(DΦ)T

|det(DΦ)| , we find when t = 1, λ1 = dG′(x) + 1, λ2 = 1
dG′(x)+1

, when

t = 1, λ1 = λ2 = 1, and when t = δ+c−|y|
δ

, the formulas for these are
much more complex. Instead, to illustrate how the eigenvalues change
when the parameters of the map change, see the appendix. Notice as
either d decreases or |b + a− R| (if −a + r < x < b) or | − a− R + b|
(if −b < x < −a−R) increase, σ approaches 1. When −b < x < b and
−c < y < c, t = 1 and the eigenvalues are reciprocals.

Again, many applications are possible with this translation mapping
and the rotation mapping that follows below. For example, since these
allow an object to appear in a different location, programmers could
use the technique in gaming.

4.2. Rotation. Next we wanted to disguise a circle inside of Ω by
making the entire circle appear rotated by a fixed angle clockwise about
the center of Ω. Note that in this case, the metamaterial is circular. A
mapping that can accomplish this is:

Φ(x, y) = (x cos α + y sin α,−x sin α + y cos α),

where a general formula for α is

α(r) =





θ 0 < r < ζ
θ

ξ−ζ
(1− ζ) ζ ≤ r ≤ ξ

0 ξ < r ≤ M,
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where θ is the rotation angle clockwise, 0 < ζ < ξ < M, where M rep-
resents the radius of the metamaterial, and r =

√
x2 + y2. For future

analysis, we pick a specific α :

α(r) =





θ 0 < r < 1
2

(3− 4r)θ 1
2
≤ r ≤ 3

4

0 3
4

< r ≤ 1,

By combining the functions for rotation and translation inside the unit
disk, we are able to move a circle with radius less than 1 anywhere in

Ω as long as
∥∥∥∂Ω− ∂D

∥∥∥
∞

> 0.

–1

–0.5

0

0.5

1

–1 –0.5 0 0.5 1

Figure 4. Rotation mapping depicting the rotational
distortion between radius 1

2
and 3

4
(left).Rotation map-

ping of the redirected electrical current given a rotation
angle of π

3
(right).

From the Jacobian of the rotation map we can compute the eigen-

values of σ, since σ = (DΦ)(DΦ)T

det DΦ
. For our Φ(x, y), we have that for

α = θ,

DΦ =

(
cos(θ) sin(θ)
−cos(θ) sin(θ)

)

and the eigenvalues of σ are λ1 = λ2 = 1. For α = 0, DΦ = I so
λ1 = λ2 = 1. The eigenvectors for both are orthonormal, with the
former depending on θ. Observations for eigenvalues and eigenvectors
of σ appear in the appendix.

Notice that the second eigenvalue increases for r = 1
2

as θ changes
from 0 to 2π, indicating more distortion of the inner boundary of the
metamaterial.

4.3. General Observations about disguising maps. Firstly, ex-
ploration of the eigenvalues of the translation and rotation mappings
led us to the following general theorem:
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Theorem 1. Let C = AAt

|detA| , where A ∈ GL(2). Then the eigenvalues

of C are reciprocals.

Proof.
AAt

|detA| =
AAt

√
det(AAt)

=
B√
detB

,

where B = AAt, since det (AAT ) = (det A)2. Thus, B is a positive
symmetric definite matrix. Let B√

detB
v1 = µ1v1,

B√
det B

v2 = µ2v2 and

Bv1 = λ1v1, Bv2 = λ2v2. Thus,

λ1 = µ1

√
det B

and
λ2 = µ2

√
det B.

Since det B = λ1λ2, det B > 0, and

λ1 > 0, λ2 > 0,

then (det B)2 = λ2
1λ

2
2, and

µ2
1 =

λ2
1

det B
=

det B

λ2
2

=
1

µ2
2

.

Therefore, since µ1 and µ2 are both positive,

µ1 =
1

µ2

.

¤
This theorem is analogous to n dimensions as well.

Corollary 1. Let µi be the ith eigenvalue of B√
det B

, and λi be the ith

eigenvalue of B. Then µi = 1

µjλ1···λ̂i···λ̂j ···λn
, where λ̂i means that it has

been removed.

Proof. This result follows immediately applying the same technique as
Theorem 1. ¤

So we are now able to make a circle of radius R appear anywhere
within a neighborhood of the boundary of the unit disc with transla-
tions and rotations. This analysis not only works on the disk, but on
any path connected domain in R2. There are limitations in what we can
make D look like. Since the map is assumed to be continuous, it maps
a connected set to a connected one, so, for instance, we cannot make
one circle look like two. One of the major discoveries of this research
are the corollaries to the following theorem that describe some of the
limitations to anticloaking. If we want to disguise D1 as D2, we must
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surround both with a suitable metamaterial. However, there are still
plenty of applications in spite of this seeming handicap; see for example
[7].

Though proven in the context of R2, the following lemma applies
to any bounded open connected set (domain) in Rn. The subdomains
are open sets and u and v are always assumed to be C2. The main
point of the lemma is that without the presence of a metamaterial (a
suitable anisotropic conductor) an insulating subdomain D1 will always
be distinguishable from another insulating subdomain D2 with just one
nonzero input flux and measured boundary voltage.

Lemma 2. Let Ω be a domain in R2 and let D1 be a subdomain. A
nonzero current flux g is input such that the potential u defined in Ω\D1

satisfies

∆u = 0 in Ω \D1,

∂u

∂n
= g on ∂Ω, and

∂u

∂n
= 0 on ∂D1.

Let D2 be a subdomain of Ω. The same current flux g is input such that
the potential v defined in Ω \D2 satisfies:

∆v = 0 in Ω \D2,

∂v

∂n
= g on ∂Ω, and

∂v

∂n
= 0 on ∂D2.

If u = v on some open portion of ∂Ω then D1 = D2.

Proof. Assume towards a contradiction that u = v on some open
portion of ∂Ω and that D1 6= D2. We know u = v everywhere in
Ω\ (D1∪D2) by unique continuation, since u and v are both harmonic
and have the same Cauchy (Dirichlet and Neumann) data on an open
portion of ∂Ω. Their normal derivatives also agree by unique continu-
ation. Without loss of generality, let D be a connected component of
D2 \D1. Thus ∂D consists of portions of ∂D1 and ∂D2. Additionally,

∂u

∂n
= 0 on ∂D1;

and
∂v

∂n
= 0 on ∂D2,
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therefore
∂u

∂n
= 0 on ∂D.

Since ∆u = 0 in D, and ∂u
∂n

= 0 on ∂D we must conclude that u is
constant in D (see, e.g., [6]). This forces u = c everywhere in Ω \D1,
(again, see [6]) which implies ∂u

∂n
= 0 on ∂Ω, a contradiction since g is

nonzero. ¤
Thus according to Lemma 2 any nonzero flux g must yield different

boundary potentials for Ω \D1 and Ω \D2; if the boundary potentials
agree, on any portion of ∂Ω, then it must be that D1 = D2.

The next two lemmas show that if a region D1 is to be disguised as
D2 then the anisotropic conductor (the metamaterial) that surrounds
D1 must in fact fully enclose D2.

Lemma 3. Let D1, D2 be open subsets of Ω with D1 ∩D2 = ∅ and let
M be a subset of Ω and

σ(x, y) =

{
1 if (x, y) ∈ M

σ0(x, y) if (x, y) /∈ M

where D1 ⊂ M ⊆ Ω, and

∇ · σ∇u = 0 in Ω \D1

(∇u) · n = g on ∂Ω,

(σ∇u) · n = 0 on ∂D1

∆v = 0 in Ω \D2,

(∇v) · n = g on ∂Ω,

(∇v) · n = 0 on ∂D2

where g 6= 0. Let u = v on some open portion of ∂Ω. If M ∩D2 = ∅,
then D2 = ∅.

Figure 5. D2 partially contained in metamaterial
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Proof. We know u = v in Ω\M and so under the assumption M∩D2 =
∅ we have

(∇v) · n = 0 = (∇u) · n on ∂D2.

This implies that (∇u) · n = 0 on ∂D2, and note that 4u = 0 in D2.
Thus as argued above u must be constant on D2, and hence everywhere
in Ω \M a contradiction to the nonzero input flux. We conclude that
D2 = ∅.

¤

From Lemma 3 M ∩D2 has a non-empty interior. In fact, D2 must
be contained in M if D1 is to be disguised as D2 for all possible input
fluxes, as the next theorem states, and as is shown in Figure 6.

Theorem 2. Let u and v be as in Lemma 3, and suppose in particular
that u = v on ∂Ω for EVERY input flux g. Then D2 ⊆ M.

Proof. First, let n2 be the outward normal on D2. Assume towards
a contradiction that D2 * M , as in Figure 5, and note then that
D = D2 \M has non-empty interior. However, by Lemma 3 we have
M ∩D2 6= ∅, so the boundary ∂D consists of pieces of ∂M and pieces
of ∂D2. Then from unique continuation we conclude that u ≡ v in
Ω \ (M ∪D2). In particular, since ∂v

∂n2
= 0 on ∂D2 we have that

∂u

∂n2

= 0

on the curve S = ∂D2 ∩ (Ω \ M). In short, we conclude that for
every input flux g the function u that satisfies the relevant equations
of Lemma 3 also satisfies ∂u

∂n2
= 0 on S. However, the techniques in [2]

show that one can always find some non-zero flux g so that ∂u
∂n2

6= 0 at
some point in S. We conclude that D2 ⊂ M . ¤

Figure 6. D2 must be completely contained in the metamaterial
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5. Thermal Imaging

5.1. Introduction. To begin our study of thermal imaging, we asked
the questions, ”Do the same principles of electrical imaging apply to
thermal imaging?” and ”Could we model the heat equation and use
this to disguise?” To determine the answers, we replicate the previous
two-dimensional example on the open unit disc in R2, which we denote
by Ω, and examine a thermally insulating subdomain D. An input
heat flux, g, is applied to Ω and we measure the resultant temperature
u on ∂Ω. The heat equation, unlike electrical imaging, is not steady-
state and therefore has a time component. In the simplest case, under
the usual modeling assumptions and after rescaling the temperature,
u(x, y, t), must satisfy the following equations:

∂u

∂t
−∆u = 0 (5.1)

∂u

∂n
= g on ∂Ω (5.2)

∂u

∂n
= 0 on ∂D, (5.3)

along with an initial condition, in our case, u(x, y, 0) = 0, an initial
temperature of 0.

We assume that the input flux is periodic, of the form g(x, y, t) =
g0(x, y)eiωt. In this case (after transients have died out) we have u(x, y, t) =
u(x, y)eiωt where equation (5.1) becomes

iωu−∆u = 0, (5.4)

while (5.2) becomes
∂u

∂n
= g0 on ∂Ω, (5.5)

and (5.3) remains the same. We will call equation (5.4) the “periodic
heat equation.”

5.2. Formulation and Meaning of the Heat Equation. In what
follows we will confine our attention to the case in which D is a disk of
radius R < 1 centered at the origin, so that Ω \D is and annulus. The
periodic heat equation (5.4) can be written in (r, θ) polar coordinates
as

urr +
1

r
ur +

1

r2
uθθ − iωu = 0 (5.6)

We can solve this on the annulus using separation of variables, which
we will use in later analysis. Let u(r, θ) = f(r)g(θ), then divide the
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heat equation by f(r)g(θ), multiply by r2, and separate variables to
find

r2f ′′(r)
f(r)

+ r
f ′(r)
f(r)

− iωr2 = −g′′(θ)
g(θ)

. (5.7)

A standard separation of variables argument shows that the solutions
are g(θ) = eikθ and f(r) = C1I|k|(ar) + C2K|k|(ar) for k ∈ Z, where Ik

and Kk are the modified Bessel Functions, a = −
√

(2)

2
(1 + i)

√
ω, and

C1 and C2 are constants. For a review of modified Bessel functions,
important identities, and approximations used in this section, please see
the appendix. Due to linearity, linear combinations are also solutions.
The general solution to equation (5.4) is of the form

u(r, θ) =
∞∑

k=−∞
ckI|k|(ar)eikθ + dkK|k|(ar)eikθ (5.8)

for constants ck, dk determined by the boundary conditions.
Note that on ∂Ω we have ∂

∂n
= ∂

∂r
, while on ∂D the derivative in

the outward normal direction is ∂
∂n

= − ∂
∂r

. If we differentiate (5.8)
with respect to r the boundary conditions (5.2) and (5.3) yield (after
matching Fourier coefficients on the left and right)

ckaI ′|k|(a) + dkaK ′
|k|(a) = gk

ckI
′
|k|(aR) + dkK

′
|k|(aR) = 0

where gk = 1
2π

∫ 2π

0
g(θ)e−ikθdθ. We find that

ck = −
gkK

′
|k|(aR)

a(K ′
|k|(a)I ′|k|(aR)− I ′|k|(a)K ′

|k|(aR))

dk =
gkI

′
|k|(aR)

a(K ′
|k|(a)I ′|k|(aR)− I ′|k|(a)K ′

|k|(aR))

a system of equations for the ck, dk.
More generally the heat equation may be written cρ∂u

∂t
= O·(K0Ou)+

Q, if we don’t rescale/nondimensionalize variables, and include the
possibility of a heat source Q. For the our case Q will equal 0. Thermal
conductivity, or the ability of the material to conduct heat, appears
in the K0 term, where K0 may be a matrix. The term of interest,
however, is cρ, a scalar, which corresponds to the specific heat and mass
density. When expressed as shown, it is interpreted as volumetric heat
capacity which describes the ability of a given volume of a substance
to store internal energy while undergoing a given temperature change,
but without undergoing a phase change. Note that if K0 is a constant,
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the equation reduces to ∂u
∂t

= kO · (Ou) where k = K0

cρ
. In the special

case that k = 1 we obtain equation (5.1).
If we want to cloak or anticloak using the heat equation, we will

need to use a suitable change of variables. Let D1 be a subdomain of
Ω and let φ be an invertible map from Ω \D1 to Ω \D2, where D2

is another subdomain. Assume φ satisfies the same differentiability
conditions as in Section 3, and as there, that φ fixes a neighborhood
of ∂Ω. Let equations (5.3), 5.4) and (5.5) hold. Define a function v
on the image of φ (in our case this v will be a temperature). Let x =
(x1, x2) be the rectangular coordinates of the domain and y = (y1, y2)
be the coordinates in the image of φ, as in the electrical case. Then
v(φ(x)) = u(x).

Theorem 3. Under the previous assumptions,

iωv

|Dφ| − O · σOv = 0

on Ω \ D2, where σ(y) = Dφ(x)(Dφ(x))T

|det(Dφ(x))| . Note that here σ represents

the thermal conductivity and 1
‖Dφ(x)‖ is related to the change in mass

density or specific heat due to the change in coordinates.

Proof. This is essentially the proof of Lemma 1, but we give an outline
here in the context of thermal cloaking, for the sake of completeness.
A comparatively easy proof can be given using the divergence theorem.
We know ∫

Ω\D1

r(x)(iωu−∆u) dx = 0 (5.9)

where r(x) is any C1 function on Ω \D1 with r = 0 on ∂Ω and r̄ is

defined on Ω \D2 by r̄(y) = r(φ−1(y)).
Since ∆xu = Ox(rOxu) − Oxr · Oxu, after applying the divergence

theorem, we get:∫

Ω\D1

r(x)iωudx−
∫

∂(Ω\D1)

r(x)Oxu · nds−
∫

Ω\D1

Oxr(x) · Oxu dx = 0

(5.10)
By using the techniques from [3], and after changing variables as y =
φ(x) and taking note of the boundary condition ∂u

∂n
= 0 on ∂D1, equa-

tion (5.10) becomes∫

Ω\D2

r̄(y)iωv(y)

|det(Dφ)| dy −
∫

Ω\D2

r̄(y)Oy · (σ(y)Oy(v(y))dy

=

∫

Ω\D2

r̄(y)

(
iωv(y)

|det(Dφ)| − O · (σ(y)Ov)

)
dy = 0.
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Since r̄(y) is arbitrary and this holds for any r̄ that is C1, this forces
iωv
|Dφ| − O · (σ(y)Ov) to be identically zero in Ω \D2. ¤

Now, we ask the question of how well we can cloak using the heat
equation. To quantify this, we look at equation (5.4) on the annulus
B1(0)\Bρ(0) and on the disk B1(0) (corresponding to using Ω = B1(0)
and D = Bρ(0) above). Specifically, we want to see how close the
solutions get as ρ approaches zero.

Below we provide a proof of the following theorem, modulo a couple
of unproven assertions.

Theorem 4. Let uρ be the solution to the heat equation (5.4) with
boundary conditions (5.5) and (5.3) on the annulus B1(0) \Bρ(0) and
u0 be the solution on the disk B1(0) with boundary condition (5.5).
Then

limρ−→0

∥∥uρ(1, θ)− u0(1, θ)
∥∥

L2(∂B1(0))
= 0

for any fixed 0 ≤ a < ∞, where a =
√

2
2

(1 + i)
√

ω.

Proof. The quantity we want to examine is (after a bit of algebra)

S(ρ) =
∥∥uρ(1, θ)− u0(1, θ)

∥∥
L2(∂B1(0))

=
1

α4

∞∑

k=−∞
|pk(ρ)|2|gk|2

where the gk are the Fourier coefficients of the boundary data and

pk(ρ) =
I ′|k|(αρ)

I ′|k|(α)

1

∆
(5.11)

where ∆ = K ′
|k|(αρ)I ′|k|(α)− I ′|k|(αρ)K ′

|k|(α) with α = −1+i√
2

√
ω, ω > 0.

Our goal is to show that for any fixed ω > 0 we have

lim
ρ→0+

S(ρ) = 0.

Suppose we can show the following two assertions:

(1) For any fixed k we have

lim
ρ→0+

pk(ρ) = 0. (5.12)

(2) For some ρ0 > 0 and some M we have

|pk(ρ)| ≤ M (5.13)

for all k ∈ Z and all 0 < ρ < ρ0.
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These would allow us to show that S(ρ) → 0 as ρ → 0+, as follows.
First, we know that

∑
k |gk|2 < ∞. This means that given any ε > 0

we can find some N so that ∑

|k|>N

|gk|2 < ε. (5.14)

Given point (2) above we may conclude that
∑

|k|>N

|pk(ρ)|2|gk|2 < εM2

for ρ < ρ0. If point (1) above holds then we may infer the existence of
some ρ1 such that ∑

|k|>N

|pk(ρ)|2|gk|2 < ε

for ρ < ρ1 (making use of the fact that each summand limits to zero
and the sum is finite.) Then for ρ < min(ρ0, ρ1) we find that

|S(ρ)| ≤ (M2 + 1)ε

α4
= ε′.

That is, S(ρ) limits to zero.
However, we have not (yet) been able to prove assertions (5.12) and

(5.13), though we are confident they are true. ¤

6. Conclusion and Future Direction

Through recent studies, the science and mathematics of cloaking
possibilities have emerged. Our project gives insights to these discov-
eries in 2 dimensions. In our examples, we were able to using electrical
impedance imaging to disguise by enlargement, relocation, and trans-
lation. An interesting continuation of our work includes the expansion
of these examples into higher dimensions for practical use.

We were also able to cloak and provide physical interpretations for
the thermal imaging case. For future direction, one could continue the
studying of the thermal imaging case and attainably expand to other
dimensions. Looking at this problem from the perspective of other
types of imaging would also be of interest.

7. Appendix

7.1. Bessel Functions. In this paper we discuss the modified Bessel
functions I±k(a) and Kk(a). Those are functions which are solutions to
the following differential equation:

a2haa + aha − (a2 + k2)h = 0.
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By relation 9.6.26 of [1],

ekπiK ′
k(a) = ekπie−πiKk+1(a) +

k

2
ekπiKk(a)

So

K ′
k(a) = −Kk+1(a) +

k

2
Kk(a)

and

I ′k(a) = Ik+1(a) +
k

2
Ik(a)

Therefore:

h = −K ′
|k|(a)Ik(a) + K ′

k(a)I ′k(a)

= −(−Kk+1(a) +
k

2
Kk(a))Ik(a) + Kk(a)(Ik+1(a) +

k

2
Ik(a))

= Kk+1(a)Ik(a) + Kk(a)Ik+1(a)

=
1

a
by relation 9.6.15. Note that h 6= 0 since Ik(a) and Kk(a) are linearly
independent for all k [1].

Finally, we present the derivation for Laplace’s equation on the disk,
which is equivalent to the heat equation when a or ω equal 0. If a = 0,
we get equations 1.2, 1.3, and 1.4. We must also assume that

∫
∂Ω

gds =
0. Then,

u(1, θ) =
∑

k∈Z
fkr

|k|eikθ, uρ(1, θ) =
∑

k∈Z

fk

1 + ρ2|k| e
ikθ(r|k| +

ρ2|k|

r|k|
),

where fk = 1
2π

∫ 2π

0
f(θ)e−ikθdθ

∫ 2π

0

(uρ(1, θ)− u(1, θ))2 =
∑

k∈Z

∣∣∣∣(
fk

1 + ρ2|k| (r
|k| +

ρ2|k|

r|k|
)− fkr

|k|)

∣∣∣∣
2

=
∑

k∈Z

∣∣∣∣
fk(

1
r|k| − r|k|)
1

ρ2|k| + 1

∣∣∣∣
2

For ρ < 1 and r ≤ 1, the above is less than or equal to

∑

k∈Z

∣∣∣∣
fkr

|k|
1

ρ2|k|

∣∣∣∣
2

,

which is a power series. By using a standard test (the root test), we
find that it (and therefore the original series) converges uniformly for
all r < 1.
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