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1 Introduction

Recall that the wave equation in one dimension is
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for —oo < z < oo and ¢ > 0. The initial conditions are

u(z,0) = f(=),
ou
Sw.0) = g

for some specified functions f and g. Equation (2) dictates the initial position

of the string, while (3) is the initial velocity.
The three basic questions we ask about any PDE are

1. FEuxistence: Is there a solution to the PDE with the given additional
conditions (in our case, the wave equation with initial conditions (2)

and (3))?

2. Uniqueness: Is there only one solution?

3. Stability: How sensitively does the solution depend on the initial con-
ditions? Specifically, do small changes in the initial conditions result
in small changes in the solution? (This has big implications for numer-

ically solving the PDE).

Definition: Problems for which all three answers are “yes” are called well-

posed. If a problem is not well-posed it’s said to be ill-posed.

2 The D’Alembert Solution

The easiest way to solve the wave equation is via simple intuition: the so-
lution ought to look like waves moving to the left or right at some speed k.



It’s simple to check that if ¢(2) is some function defined on the real line then
ui(x,t) = ¢(x — kt) is a “wave” that moves to the right at speed k, while
ug(z,t) = ¢(x + kt) is a “wave” that moves to the left at speed k. Plugging
uy(z,t) = ¢(x — kt) into the wave equation forces

(K — )¢/ (x) = 0

from which we must conclude that k = +¢, at least if ¢”(x) isn’t identically
zero. The same conclusion follows from plugging u, into the wave equation.
We conclude that for any twice-differentiable function ¢(z) the functions
¢(x — ct) and ¢(z + ct) are both solutions to the wave equation. It’s easy
to check this directly too, by plugging these functions back into the wave
equation.

Note that the wave equation is linear—from our point of view this is a
HUGE asset, not just for the wave equation, but for any PDE. Linearity
here let’s us assert that any linear combination of two solutions is again a
solution, so that anything of the form

u(a, ) = d(x — ct) + dala + ct) (4)

is a solution for any choice of ¢ and ¢o, at least if ¢; and ¢, are both twice
differentiable in x and t. It’s also easy to see that any scalar multiple of a
solution, e.g., A¢(x — ct) or Ap(x + ct), is again a solution.

We can build a solution to the wave equation by rigging up a linear
combination of the form (4) for suitably chosen ¢; and ¢y. Specifically, the
initial conditions dictate that at time ¢ = 0 we need both

¢1(x) + da(x) = [fl2), (5)
—chy () + cdy(x) = g(x). (6)

Use equation (5) to find ¢ = f — ¢ and substitute this into equation (6) to
obtain

—2c(2) + cf'(2) = g(2)
where I've used z for the independent variable instead of z. Solve this equa-
tion for ¢/ (z) and integrate from z = 0 to z = z to obtain

01(0) = 61(0) + 5 (@) = 570) = 5 [ glz) =

If you look at equation (5) you’ll see that there is a certain amount of leeway
in choosing ¢; and ¢,—I can add some constant to ¢, if I subtract it from ¢,.
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With this trick I can arrange for ¢;(0) = 1 £(0) (and so also ¢2(0) = L £(0))
and so the previous equation is just

1 1

61(@) = 31 @) = 52 [ 9()d ™)

The same procedure shows that

bo(a) = 30) + o [ 9(e)d. (5

Using equations (7) and (8) in equation (4) shows that the solution to the
wave equation with initial conditions (2) and (3) can be written “explicitly”
as

u(z,t) = ¢1(x—ct) + do(x — ct),
= et + fa o)

2
1 x—ct x+ct
—%/0 9(z)dz + — /+ 2)dz
1 x+ct
= S(f@—ct)+ flatet) + 5 /7@ (9)

The last equality follows from the basic fact that [> = — f.

3 Examples

It appears that the functions f and g can be just about anything, although

we need g to be nice enough so that the integral on the right in (9) exists.

One way to do this is to require that g be continuous (piecewise continuous

would be fine too). In fact, we’ll put some more conditions on f and g shortly.
Here are some examples illustrating the nature of the solution.

Example 1: Suppose that ¢ = 1 and the initial conditions are

.Tg —1’3 X
f<x):{o<l B, 0< <1,

else

and g(x) = 0 for all . The function u(z,t) at time ¢ = 0 looks like
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According to the formula (9) the solution for ¢ > 0is +(f(z +t) + f(z —t)).
The initial wave above splits into two waves, both initially equal to f(z)/2;
one wave moves to the left at speed 1, the other to the right at speed 1. The
solution at time ¢ = 1 looks like

1 2 3 X

It’s easy to see that this is always the behavior of the solution if g = 0.

Example 2: This example, a bit more complicated, raises some issues about
what it means for a function u(x,t) to “satisfy” the wave equation. Let ¢ = 1.
Suppose now that f =0 and

1, O0<z <1,

9(x) = { 0 else



In this case the solution isn’t so easy to write down explicitly, at least not
without a bit of thought. We have

1 pztt
u(z,t) =

5] g(z)dz.

In order to figure out what the solution looks like it will be helpful to draw
a picture in xt space:

2 (X ’t)

Suppose we want to find the solution at some specific point (zg,ty). Ac-
cording to (9) we should integrate g(z) (which “lives” at time ¢ = 0) from
r = xg — ty to x = xo + g, as illustrated in the picture above. I've drawn
lines from the point (xg,ty) to (zg — t9,0) and (zg + to,0). The triangular
region between the lines is called the backward light cone. In this case if none
of the light cone intercepts that portion of the z axis where 0 < z < 1 then
the integral [°*/° g(z)dz is zero and so u(wg,ty) = 0. You can easily check

xo—to
that this occurs if z +t < 0 or x —t > 1. In fact, there are six distinct cases,



as illustrated by the figure below:
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I've labelled the six different regions in the zt plane as Ry, Ro, ..

are defined by the inequalities

Rli ZL‘—FtSO
Ry: z+t<1l,z+t>0
Ry: z—t<0,z+t>1
Ry: z—t>0,x—1t<1
Ry: z2—t>0,2+t<1
R(;Z l‘—tZl
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,x—t>0

,x—1t<1

If you pick a typical point (xg,%y) in one of the regions, draw its light cone,

and look at how much of g is intercepted, you
is given in each region by

R1 . u(l’o, to) =0
Ry . u(xo,ty) = %
Ry u(xo,ty) = %
Ry: u(wg, to) = 5(1 —
Rs: u(zo,to) = to
Rﬁ . U(Io, to) =0

find that the solution u(x, t)

(zo + to)

To + to)

Here’s a picture of the solution at times t = 0.5, 1, 2:
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Here’s an interesting point, though: The “solution” u is NOT even once
differentiable at certain points, as you can see from above. What does it
mean to say that this function “satisfies” the wave equation? We’ll look at
such issues later in the course, in a more general setting.

4 Existence and Uniqueness

Technically, in order for the solution (9) to make sense we need to be able
to put it into the wave equation and get zero, which requires that we be
able to differentiate u twice with respect to t and x. This requires that
the initial condition f be twice differentiable and g must be once differen-
tiable. As illustrated in Example 2 above, this isn’t true unless f and g are
themselves smooth enough. Hence we’ll assume for now that f and g are
smooth enough so that the second derivatives of u make sense; specifically,
we'll require that f be twice continuously differentiable (that is, have a sec-
ond derivative which is continuous) and g be once continuously differentiable.

Notation: We'll say that a function ¢(x) is in C*(I) if ¢ is k times contin-
uously differentiable on the interval 1.



Thus in the case that f is in C*(R) and g is C'(IR) we've answered the
existence question for the wave equation, by showing that there is a solution
to the wave equation with given initial conditions. But could there be more
than one solution? The answer is NO, at least not a physically reasonable
solution. The nicest way to prove this is by using conservation of energy.
Before we show that the wave equation has a unique solution let’s look at
conservation of energy as it applies to this problem.

4.1 Conservation of Energy

We showed in a previous class that the total energy F(t) (kinetic plus po-
tential) of the string at time ¢ as it vibrates is given by

2/ (z,t) +ul(t,r))dz, (10)

where I've used the values A = 1 and T = 2.

Claim: dd—f = 0, i.e.,, E(t) is constant. This means that the total energy

of the string is constant.

Proof: Differentiate both sides of (10) to obtain

de 1d

= =5 ( 2u(z,t) + ul(t, ) da. (11)

What I want to do is slip the ¢ derivative inside the integral, but this merits
some kind of remark. This is permissible only under certain conditions. What
we are asking is in essence whether

e ([ownw)= [ Lona (12)

for a function ¢(x,t). The simplest circumstances under which this is true is
the following:

1. Both ¢ and 2 at are continuous functions;

2. The interval (a, b) is finite, or equivalently, if the interval is infinite then
¢ is zero outside some finite interval).
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In this case equation (12) is true (though it remains true under more general
conditions).

Terminology: A function ¢(z) which is identically zero for all x outside
some bounded interval [a, b] is said to have compact support.

What this means in our case is that we must assume that the function
u(x,t) has continuous second derivatives (we're using ¢ = u2 + u?) and we
must assume that for each fixed ¢ the function u(z,t) has compact support
in z. We can then slip the derivative under the integral in equation (11) to
obtain

dE o0
i /_ (CPUgtipy + Ugtiyy) do (13)

Now integrate the first term by parts in x (and use the fact that u is zero for
|z| large, so the endpoint terms vanish). We find

< 2 < 2
/ cuxumtd:c:—/ C UppUs AT,

—00 —00

But if we use the fact that c®u,, = uy (u satisfies the wave equation) then

< 2 < 2
/ cuxuxtdx:—/ cupu dx.

and equation (13) immediately becomes

dE
E_O

as claimed.

4.2 Uniqueness

Let’s suppose that we have a solution to the wave equation (1) and initial
conditions (2) and (3). We know that there is at least one solution to this
problem, provided f and g are nice enough. I claim that there is only one
solution (with the property that u has compact support in = for each fixed
t). To prove this, suppose that there are TWO solutions to this problem, say
uy(z,t) and wus(z,t), so both satisfy the wave equation and have the same
initial conditions, and both have compact support in x for each time . We



will prove that u(x,t) = us(x,t), i.e., they're really the same function. We'll
start by defining a function w(x,t) = us(x,t) — ui(x,t); we’ll then show that
w(z,t) = 0, so that uy = u;.

By using linearity it’s easy to check that

Pw 0%

o o =0
w(z,0) = 0,
ow

We know that the total energy
1 00
B(t) =5 [ (wie,t) + (e, 1) da

is constant in time. But it’s trivial to see that £(0) = 0, so E(t) = 0 for all
t. This means that

/_O:O(wf(a:,t) + w?(x,t)) dz =0

However, the integrand is a nonnegative function, and so the only way the
integral can be zero is if w?(x,t) + cw?(x,t) = 0, so that both w(z,t) =0
and w,(x,t) = 0. This means that w is constant in both x and ¢, and
since it starts as zero, it’s always zero. Thus w(z,t) = 0, so u; = us, i.e.,
the wave equation has a unique solution. This is worth stating as a Theorem:

Theorem: Let f € C*(R) and g € C'(R) have compact support. Then
equation (9) defines the unique solution u(x,t) to the wave equation with
compact support in z for all £ > 0 and initial conditions (2) and (3).

By the way, this argument requires that we consider only initial conditions
which give E(0) < oo, or else the integrals that appear don’t make sense. The
condition that F(0) < oo is simply that the solution has a finite amount of
energy, the only case that makes sense physically. The condition F(0) < oo
is actually guaranteed by our other assumptions (think about it: why?).
It’s also interesting to note that the integral which defines E(t) and makes
uniqueness so easy to prove would have been hard to come up with in a
purely mathematical fashion—remember, we were led to E(¢) by thinking
physically, in terms of energy.
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4.3 Causality

Once again, let’s consider the figure

(x.,t)

The region inside the lines x + ¢t = x¢ + cty and © — ¢t = xy — cty is called
the light cone. If you look at the D’Alembert solution

xo+cto
u(zo,t0) = ;(f(xo — cto) + f(zo + cto)) + 21/ 9(z) dz
C Jxg—ctg
you see that the solution u(zg,?y) is synthesized out of data along the line
t = 0 which lies between x = xy — ctyg and x = xg + cty. Specifically, we
integrate g from x = xy — cty to x = xg + cty, and average the value of f at
r = xg — cty and x = x + cty. This is the basis of the Principle of Causality
for the wave equation. The initial conditions outside the backward light cone
of the point (z, tg) have no effect on the solution at (z¢,ty). There’s nothing
special about initial conditions at ¢ = 0, either; we could just as well take
initial conditions at ¢ = 1, in which we’d find that only the initial conditions
on the plane t = 1 which lie inside the backward light cone are relevant to
determining the solution at (x¢,%y). The general principle is that only events
that happen inside the light cone of (xg, %) can affect what happens there.
The flip side of the coin is that events at the point (xg, %) can influence
the solution to the wave equation only at those points in the forward light
cone. The Principle of Causality is sometimes stated “information cannot
travel faster than c.”

Editorial Remark: Causality is a perfect example of the kinds of inter-
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esting properties we look for when we try to understand PDE’s and how so-
lutions behave. Note that I said “understand PDE’s” and not “solve PDE’s”.
If you're hell bent on nuts-and-bolts techniques for cranking out solutions for
PDE’s, you'd probably never hit upon a phenomena like causality, and your
understanding of what’s really going on would be the poorer for it.

4.4 Stability

The goal in this section is to show that the solution to the wave equation is
stable with respect to the initial conditions. In other words, small changes
in the initial conditions produce small changes in the solution at any later
time. If that were not the case then trying to solve the wave equation nu-
merically would be difficult or hopeless—any numeric approximation in the
initial conditions might change the solution at a later time by an arbitrarily
large amount.

Notation: For a function w(z) defined on the real line we’re going to use
the notation
[wllo = sup Jw(z)]

—oo<r<o0

and for a function w(z,t) we'll define

[wlleor = sup Juw(z,T)|
—oo<r<o0

for a fixed time T'. You should easily be able to convince yourself that each
of the following is true:

|w(z — a)|o ||w(z)||oo, for any constant a,

[wr +wsllee < [Jwnlloo + lwal|se,

lwr = wallo < flwnfloo + [lwaloo,
b

[ wiw)da| < (0= a)|ull.

a

The quantity ||w]| is called the supremum norm of the function w, and is
one way to measure how large a function is.

Suppose that wu;(z,t) solves the wave equation (with speed ¢) and ini-
tial conditions u;(z,0) = fi(z) and 24 (x,0) = g;(x). Suppose that us(z, t)
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solves the wave equation with initial conditions us(x,0) = fo(z) and %(m, 0) =
g2(z). Then the function w(z,t) = uy(z,t) — uy(z,t) satisfies

Pw 0w

e o =0
w(z,0) = folx) = fi(w),
ow

a(x,O) = ¢(7) — qi(2).

The D’Alembert solution to this is

w(e,t) = S(Ufale = ct) = file = ct)) + (ol +t) = file + 1)

1 r+ct
to [ (92(2) - (=) dz (14)
C Jx—ct
Let’s fix t = T' (some specified future time 7"). Then

1 1

sfelz—cD) = filz =D))< Slfe— fillx,

1 1

Jlfale+cl) = filz+cT)) < Fllf2 = fillo,

1 z+cT
27/%@ (92(2) = g1(2)) dz < T'flg2 = gnlloo

All in all we find from equation (14) that
lw(z, T)| < [Ifo = fillo + Tllg2 — 91l

or in terms of u; and uo,

ug(z, T) —ur(z,T)| < [[f2 = filloo + Tllg2 — 91l

This is valid for any x, so we can write it as

lug — uilloor < || f2 = filloo + Tllg2 — 91|00

This is the stability result we want. It says that if f; is close to fo and
g1 is close to gy (as measured in supremum norm) then w; is close to uy at
any fixed time 7". Small changes in the initial conditions will produce small
changes in the solution at any fixed future time. Of course as T increase the
resulting changes might very well grow.
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A typical application of this would be in a numerical solution to the wave
equation, in which we might have to approximate the initial conditions—
perhaps f; and ¢; are the “true” initial conditions and f, and g, are our
numerically approximate conditions. Then wu; is the true solution and wus is
some kind of approximation. If we’re interested the case time T = 3, for
example, and if our solution must be accurate to 0.001, then we must have
the initial conditions approximated accurately enough to guarantee

If2 = fillo + 3llg2 — g1llcc < 0.001.

This puts an upper bound on how much error we can tolerate in our approx-
imate initial conditions.

We can summarize most of what we’ve figured out concerning the wave
equation with the following theorem:

Theorem: The wave equation with initial conditions (2) and (3) is well-
posed, i.e., possesses a unique solution which, for each t > 0, has compact
support in x, and which depends stably on f and g, provided that f € C*(R),
g € CY(R) are of compact support.
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