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1 Introduction

Consider a string stretching along the x axis, of indeterminate (or even infi-
nite!) length. We want to derive an equation which models the motion of the
string as it vibrates. Let’s use t for time, x for position along the horizontal
axis, u(x, t) for the vertical displacement of the string at position x and t.
We’ll also use T to denote the tension in the string and λ(x) to denote the
linear density of the string at position x.

The equation of motion of the string can be derived from nothing more
than F = Ma and a few reasonable assumptions. First, we will assume that
the motion of the string is of small amplitude, and purely vertical. As such,
the equation we derive won’t apply to large amplitude motion or to a string
with any significant longitudinal motion (e.g., a slinky). I’m going to use the
notation ux for the first derivative of u(x, t) with respect to x, uxx for the
second derivative, etc.

Consider a small portion of the string stretching from x to x + dx, with
angles θ1 and θ2 as labelled.
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Our first task is to find the total force on this piece of the string. It’s
easy to check that the force on the left side of this small string element
is F(x) = −T cos(θ1)i − T sin(θ1)j. Similarly the force on the right end
is F(x + dx) = T cos(θ2)i + T sin(θ2)j (this all assumes tension is roughly
constant). Let us assume that the string vibrates in such a way that the
slopes (or angles θ1 and θ2) stay small; this might be called a small strain or
first order model, depending on your field. In this case both angles are close
to zero and we have the approximations (from the Taylor’s series)

sin(θ) = θ +O(θ3),

cos(θ) = 1−O(θ2).

In this case we can make the first order approximations (dropping the small
quadratic and higher terms)

F(x) ≈ −T i− Tθ1j,

F(x+ dx) ≈ T i+ Tθ2j.

It’s also easy to combine the above approximations to find that if θ is small
then tan(θ) ≈ θ. From the picture it’s clear that ux(x, t) = tan(θ1) ≈ θ1 and
ux(x+ dx, t) = tan(θ2) ≈ θ2, so to first order we have

F(x) ≈ −T i− Tux(x, t)j,

F(x+ dx) ≈ T i+ Tux(x+ dx, t)j.

The total force on this string element is F(x) + F(x+ dx), which is

Ftot = T (ux(x+ dx, t)− ux(x, t))j

≈ Tuxx(x, t) dx j, (1)

where I’ve used the fact that uxx(x, t) ≈ (ux(x + dx, t) − ux(x, t))/dx if dx
is small—indeed, that is the very definition of the derivative uxx. Note that
the force is (to our level of approximation) entirely vertical, in keeping with
our original assumptions.
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The acceleration of this piece of the string is just utt(x, t)j, and the mass is
approximately λ(x) dx. Using Newton’s second law, F = ma, we can equate
the total force Ftot in equation (1) with Ma = λ(x)utt(x, t) dx to find (I’ll
switch to Leibnitz notation for now)

λ(x)
∂2u

∂t2
− T

∂2u

∂x2
= 0, (2)

which is one version of the wave equation. We can also write it in the form

∂2u

∂t2
− T

λ(x)

∂2u

∂x2
= 0.

It’s interesting to look at the physical dimensions of T
λ(x)

; tension T has units
of mass per length per time squared, while λ has units of mass per length.
Thus T

λ(x)
has units of length squared per time squared, or velocity squared.

That’s exactly what it turns out to be. In the case that λ is constant (that’s
what we’ll be most interested in) we frequently write c2 = T/λ and write the
wave equation as

∂2u

∂t2
− c2

∂2u

∂x2
= 0, (3)

where c has dimensions of velocity.
Equation (3) is called the wave equation. It’s an example of a partial dif-

ferential equation (“PDE” for short), i.e., an equation involving the deriva-
tives of an unknown function of two or more variables. The wave equation is
one of the “big three” PDE’s from mathematical physics (the other two are
the heat equation and Laplace’s equation).

Our goal is, of course, to find solutions to the wave equation. There are
many, and we can’t nail down one without further information. It seems
obvious that we ought to need the initial position of the string in order to
determine its position at later times and positions. Thus, if we take t = 0
as the initial time, we need the information that u(x, 0) = f(x) for some
given function f(x) that specifies the initial position of the string. Here x
will range over the length of the string.

The initial position might seem like enough information to determine
the string’s motion, but it isn’t. Do a simple thought experiment, in which
two different (but physically identical) strings start in the same position,
but with different initial velocities; it’s clear the strings would have different
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future motion. So as it turns out, we also need to know the initial velocity
of the string, say ∂u

∂t
(x, 0) = g(x) for some specified function g(x).

For now we’re going to concentrate on “infinite” strings, in which x takes
the range −∞ < x < ∞. So in summary, out goal is to examine the solv-
ability of the partial differential equation (3) with initial conditions

u(x, 0) = f(x)

∂u

∂t
(x, 0) = g(x)

for some given functions f and g.

2 Energy

For later reference, it’s convenient to compute the kinetic and potential en-
ergy of the string as it moves. Again consider the small string element from
x to x+dx. Its velocity is just ut(x, t) and its mass is (to first order) λ(x) dx.
The kinetic energy of this piece is then 1

2
λ(x)ut(x, t)

2 dx and the total kinetic
energy of the string is obtained by adding up all the pieces, i.e.,

KE =
1

2

∫ b

a
λ(x)ut(x, t)

2 dx (4)

where a and b are the ends of the string (maybe at plus or minus infinity).
The potential energy of the string in a given configuration is a bit more

challenging to find. Suppose that at some instant in time the string has the
shape u(x, t) = ϕ(x); I’m thinking of time as frozen, since we’re interested
only in potential energy. The potential energy of the string in this position is
the amount of work needed to deform it from the position u(x, t) ≡ 0, if we
use the u ≡ 0 as our reference point. Consider deforming the string from this
base position to u(x, t) = ϕ(x) by taking rϕ(x) and letting r run from 0 to
1. For a given string element stretching from x to x+ dx the above analysis
shows that the vertical force required to push the element upward for any
value of r is −Trϕxx dx (this is MINUS the force exerted by the string.) If
we change r by a small amount dr then we move this string element by a
distance ϕ(x) dr. The formula that work equals force times distance shows
that we do an amount of work

dW = −Tϕ(x)ϕxx(x)r dx dr

4



on the string element. The total work on the element from r = 0 to r = 1 is
obtain by adding (integrating) dW from r = 0 to r = 1, and is just

Welement = −T

2
ϕ(x)ϕxx(x) dx.

The total work done in moving the entire string from the base configuration
to the u(x, t) = ϕ(x) configuration is obtained by adding the work over each
element, and is thus

Wtotal = −T

2

∫ b

a
ϕ(x)ϕxx(x) dx.

If we integrate this by parts in x (use
∫
u dv = uv −

∫
v du with u = ϕ,

dv = ϕxx dx) we obtain the potential energy of the string in the configuration
ϕ(x):

PE =
T

2

∫ b

a
ϕ2
x(x) dx

where in doing the integration by parts I’ve made the assumption that
u(a, t) = 0 and u(b, t) = 0 OR ux(a, t) = 0 and ux(b, t) = 0; these boundary
conditions model specific physical situations that we’ll talk about later. All
in all then, the potential energy of the string in the position u(x, t) is

PE =
T

2

∫ b

a
u2
x(x, t) dx. (5)

The total energy of the string, kinetic plus potential, at time t is

Energy =
1

2

∫ b

a
(Tu2

x(x, t) + λ(x)u2
t (x, t)) dx
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