Ideas from Vector Calculus
Kurt Bryan

Most of the facts I state below are for functions of two or three variables,
but with noted exceptions all are true for functions of n variables.

0.1 Tangent Line Approximation

If f(x) is a C? function (that is, twice differentiable with continuous second
derivative) then

f@) = f(xo) + f'(xo)(x — w0) + O(|z — wo|*),
or, if we let df = f(z) — f(zo) and dz = = — o,
df = f'(20)dx + O(dz?).
For a function of two variables, f(z,y),

f(x,y) = f(xo,y0)+fo (o, yo) (x—x0)+ fy (20, yo) (y—y0)+O(Jx—x0*+|y—10[?)
or df = fudz + f,dy + O(dx® + dy?).

0.2 Parametric Curves and Surfaces

To specify a curve parametrically means to specify each coordinate variable

as a function of a single independent parameter, e.g., v =t + 2, y = sin(t).

This can also be written in a more compact vector-valued function notation,

r(t) = (t+2,sin(t)). Of course the idea extends to three or more dimensions.
If r(¢) is a curve then r'(¢) is the vector

[ x(tdt) — ()
dt—0 dt

and is computed in the obvious manner—differentiate component by compo-
nent. It’s not hard to see that r'(¢) is tangent to the curve r(¢)—just visualize
the points r(t) and r(¢ + dt) on the curve, and let dt approach zero. The
vector r(t 4 dt) —r(t) is a secant vector joining the points r(t) and r(t + dt);
dividing by dt just rescales it. In the limit that dt — 0 it’s intuitively clear
that the limit defines a tangent vector.
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In three (or more) dimensions we can specify two-dimensional surfaces
parametrically, by giving z, y, and z as functions of two other variables, say
s and t. For example, if 0 < s <7 and 0 <t < 27 then

r = sin(s)cos(t),
= sin(s)sin(t),
z = cos(s)

specifies the unit sphere in three dimensions.

If a surface is given parametrically as a vector-valued function r(s,t), then
the vectors ry(s,t) and r.(s,t) are vectors which are tangent to the surface
r at the specified point. You can see this in exactly the same way that you
see that r'(t) is a tangent vector to the one-dimensional curve r(t).

0.3 The Gradient and Directional Derivatives

The gradient of f(z,y) is a vector and is written V f. The definition is

Vf(x,y) = (fx(x7y>?fy(xvy>>

or, if you like the i and j notation, V f(x,y) = fo(x,y)i+ f,(z,v)j.

IMPORTANT: Geometrically, V f(xo, o) is a vector that points in the
direction of steepest increase for the function f at the point (g, yo).

If n is a unit vector then V f (o, yo)-n is the rate of increase of the function
f in the direction n at the point (xg, 3o); this is called the directional deriva-
tive of f in the direction n and is usually written as g—fl. In two dimensional
xy space, if n = (1,0) or (0, 1), respectively, then the directional derivative
is just the partial derivative with respect to the corresponding variable, e.g.,
if n = (1,0) then g—ﬁ = %. Similar results are true in any other dimension.

Example: Suppose f(z,y) = 2® —ay and n = (5, — ). What is 91 (1,4)?
First, compute the gradient of f,

Vf(x,y) = (2‘7: - Y _I>‘

At the point (1,4) Vf(1,4) = (=2, —1), so the direction derivative is (—2)(J5)+

(~D(=) = 3.



0.4 Vector Fields

A vector field is a function that takes any point (x,y) in the plane and as-
signs to it a vector. For example, v(x,y) = yi — zj is an example of a vector
field. On important example of a vector field is the gradient of a function.
If f(z,y) is a function then V f(x,y) is a vector field. You can plot a vector
field by choosing a large number of points in the plane, computing the vector
associated with each, and then plotting the vectors, each with its tail at the
appropriate point:
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Vector fields are used to describe the velocity or more generally the “flow”
of some fluid or other quantity in space, electric and magnetic fields, gravi-
tational fields, and generally any quantity which is a vector and varies from
point to point in space.

0.5 Line Integrals

Suppose you have a rope which is 5 meters long and has a linear density of
0.5 kg per meter. What is the mass of the rope? The answer is obvious, 5
meters times 0.5 kg per meter gives 2.5 kg. If density is constant then mass



is density times length.

Now suppose that the rope has a variable density—how do we compute
the mass? The idea is simple: chop the rope up into many small pieces; each
piece has an almost constant density (at least if density varies continuously
along the rope), so find the mass of each little piece as above (density times
length) and add up the masses. As an example, suppose that the rope is
described parametrically in three dimensions by r(t) = (¢,¢* + t,sin(t)) for
0 <t < 2. Suppose that the density along the rope is p(t) = ¢t + 1. If we
change t by a little bit dt then the resulting change in r is

dr =1'(t)dt = (1,2t + 1, cos(t)) dt,

an infinitesimal vector. Its length ds is

ds = |dr| = \/2 + 4t + 4t% + cos?(t) dt.

On such a short piece of the rope the density is virtually constant. Therefore
the mass of this short piece should be nearly p(¢)ds. The total mass is
obtained by adding up the mass of each piece,

2 2
/ p(t)ds:/ (t—l—1)\/2+4t+4t2+c032(t)dt,
0 0

whatever that works out to be.
More abstractly, we can talk about integrating a function f over a curve
C which means computing the integral

/Cfds.

In order to actually compute the integral we’d have to parameterize C' with
some function r(¢) with appropriate limits and then set ds = |r/(¢)| dt. The
parameterization of C' that we choose doesn’t change the value of the integral
(as long as 1’ # 0 at any point).

One common use of line integrals is for computing work. Suppose a
particle follows a path r(¢) through a vector field F' which exerts a force on
the particle. Recall also that work is the dot product of the displacement
vector with the force, if the force is constant. In this case, as the particle
moves from ¢ to ¢t 4 dt the displacement is r'(¢) dt, and so the work done over
this short time interval is r'(¢) - F dt. The total work from time #; to to is

/ P V() - F(x(t)) dt.

t1



0.6 Flux over a Curve

For this concept we restrict our attention to two-dimensional space. Later
we’ll generalize to three dimensions. Suppose that v(z,y) is a vector field
that describes the velocity of some fluid flowing around in two-dimensional
space; we’ll assume that v does not depend on time, so the flow is “steady-
state”, and that the corresponding fluid is incompressible. Note the v has
units of length per time. The question of interest is this: Given a curve C in
the plane, how much fluid per unit time is crossing the curve C7 The answer
should be in square units of fluid per time.

We'll start with a simple case in which v is constant and C' is a line
segment, say v = (2, 3) meters per second. Let S be a line segment with unit
normal vector n as illustrated below:

I'll use |S| to denote the length of S. The shaded parallelogram in the figure
represents the fluid that crossed S from time ¢ to time £+ 1. The area of the
parallelogram is, from high school geometry, |S||v|sin(§ — @) or equivalently,
|S||v| cos(f), which is just |S|v-n (here |v| is the magnitude of v, as a vector).
This is the rate at which fluid is crossing S in the direction of n. For example,
if S is a segment of length 0.1 meters tilted at an angle of 45 degrees below
the horizontal (so we can take n = (1/v/2,1/4/2)) and v = (1,2) meters per



second then

1S|v-n=0.1(1/v2 +2/v2) ~ 0.212

square meters per second. The fact that the answer is positive indicates that
the net flow is in the direction of the vector n. Note that we could have taken
the unit normal vector n as (—%, —%), in which case the answer would have
been —0.212 square units per second, indicating the flow is opposed to n.

One thing worth noting is this: the vector field v, a velocity, can be
thought of a bit differently. Obviously the direction of v is the direction of
fluid flow. What about the magnitude of v? Suppose that the segment S is
orthogonal to the field v, that is, n is parallel to v. In this case the amount
A of square units of fluid crossing S per unit time is given by A = |S|v-n =
|S||v| square units per second. This can be rearranged into |v| = A/|S|, with
|v| having the physical dimension of square units per second per unit length.
Based on this, we can think of v as a vector which points in the direction of
fluid flow, but with magnitude |v| given by the rate at which fluid is crossing
a short segment S oriented orthogonal to the flow, per length of S. The
advantage of thinking of v as “stuff per time crossing S per length of S” is
that this interpretation extends to physical setting in which the “stuff” that
flows doesn’t really have a velocity, but where we can still think about how
much stuff per time crosses a given curve (e.g., heat energy).

Now suppose that the curve is not a simple line segment, and the vector
field v varies from point to point. How do we compute the amount of fluid
crossing the curve per unit time? Let C' be the curve, described parametri-
cally by a function r(t) = (z(t), y(t)) with t; <t <t;. We can compute the
fluid crossing C' by chopping the curve C' into many short segments. Over
each segment the vector field v is nearly constant. We use the procedure
above to find the fluid crossing each piece and then add them up.

The short pieces that we chop C' into will be obtained by letting ¢ change
from ¢ to t + dt; the resulting change in r(¢) will be

dr = r(t +dt) — r(t) =~ r'(t) dt.

Here dr is vector that plays the role of S above. Its length is |r'|dt =
((2'())%+(y'(t))?)Y/2dt. We also need a unit normal vector to dr = (2'(t), y'(t)) dt.
In two dimensions, a normal vector can be obtained by reversing the compo-
nents of the vector and making one negative, e.g., the vector (y/(t), —2/(t)) is



normal to dr. To make it a unit vector, divide it by its own length, to obtain
W), —2'1)
((@'()? + (y'()*)/*

If the vector field is v(z,y) = (v1(z,y), v2(x, y)) then the flux over this short
piece is

d(flur) = v -nldr| = (vi(z,y)y'(t) — vo(z,y)2'(t)) dt

where the hideous square root in the denominator of n is cancelled by an
identical square root in dr. The total flux over the whole curve C' is obtained
by adding up over each piece,

[ @@y 0 = vl ) @) dt. (1

t1

Of course I could have chosen n to point the other direction. That’s ok, you
just have to keep track of what you choose and interpret the answer accord-
ingly. The integral (1) is called the fluz over the vector field v over the curve

C.

Example: Let the curve C be the unit circle, r(t) = (cos(t),sin(t)) for
0 <t < 27 It’s worth noting that n = (cos(t),sin(t)) (obvious—why?)
and that |dr| = dt, although given formula (1) we don’t explicitly need
these facts. Note that n points out of the circle. Let the vector field be
v(z,y) = (z,yz?). Then the amount of fluid crossing the boundary C' per
unit time is, from equation (1),

/ (v m)|dr| = / 7 (sin(t) cos?(£) + cos2(t)) dt = 5/4r

The answer is negative because the net flow of fluid over C' is opposed to
the outward-pointing vector n, so that we have a net flow of —5/47 square
meters per second INTO the circle.

More generally, given any vector field F (not necessarily the velocity of

any fluid) and a curve C' we can talk abstractly about the flux of F over C.
In two-dimensions the flux of F over a one dimensional curve C' is written

abstractly as
/ F-nds
c
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where ds = |dr| and n is the outward unit normal vector on C. In order
to actually compute the flux we must parameterize C' and write out the
integrand (this is formula (1), use F instead of v). It is a fact that how one
parameterizes the curve C' does not affect the value of the flux integral!

0.7 Surface Integrals

This is a simple generalization of line integrals; only the details of the com-
putation change. As an example, suppose we have a surface specified para-
metrically as

r = cos(v)(5— 2cos(u)),
= sin(v)(5 — 2cos(u)),

z = 2sin(u),

for 0 < u,v < 27. (You can plot this in Maple—it’s a torus.) Let’s also
use the notation r(u,v) when convenient, so r is a three-dimensional vector.
Suppose that the density of the surface (mass per unit area) is given by

plu,v) =2 +u+0v*—v

with units of kg per square meter. What’s the mass of the surface?” The
idea is exactly the same as a line integral: chop the surface into many small
pieces, compute the mass of each, add them up.

To chop up the surface we’ll take small changes in v and v. Suppose that
u changes to u + du. Then r changes by an amount dr, with

dr, = r(u+ du) — r(u) = (Ty, Yu, 2u) du

where I'm writing z,, for g—i, etc. The vector dr, is an “infinitesimal” vector
which is tangent to the surface r(u,v). Similarly, a small change in v to
v + dv sweeps out a vector

dr, =r(v+dv) —r(v) = (Ty, Yy, 2v) dv

which is also tangent to the surface. Consider the area spanned by these two
vectors; it’s a parallelogram. This will be our strategy for chopping up the
surface. Perhaps it’s best illustrated with a graphic like
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See how Maple draws the surface as a bunch of small quadrilaterals?
We're doing the same thing, but using parallelograms (and in the limit that
we chop finely there’s really no difference). The corner of each parallelogram
represents some parameter values (u, v), while the other 3 corners correspond
to (u + du,v), (u,v + dv), and (u + du,v + dv). The parallelogram’s sides
are spanned by dr, and dr,. The area dA of the parallelogram is just (from
high school algebra) |dr,||dr,|sin(6), where 6 is the acute angle between the
vectors. This is most easily found (in three dimensions) by using the cross
product. You might recall that a basic property of the cross product is that

|dr,, x dr,| = |dr,||dr,|sin(0)

so dA = |dr, x dr,| in this case. For our torus case the tedious computation
of dA gives

dA = \/100 — 80 cos(u) + 16 cos?(u) du dv.

You can find the area of the torus by adding up all the dA’s over the appro-
priate v and v limits,

27 27w
/ / \/100 — 80 cos(u) + 16 cos?(u) dv du = 407
o Jo
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The mass of any individual piece is pdA, so the total mass will be the sum
J pdA, which is

2r 27 160
/ / \/100 — 80 cos(u) + 16 cos?(u)(2 + u + v* — v) dv du = 807 + TW‘*
o Jo

with units of kilograms.

0.8 Flux over a Surface in Three Dimensions

Conceptually, this is the same as the flux over a curve in two-dimensional
space. First, suppose that L is a planar surface in three-dimensional space,
with unit normal vector n, and F is a constant vector field which represents
the volume flow rate of some (incompressible) fluid. Note that F would have
units of volume per unit time per AREA. How much fluid per unit time flows
over the surface L? You should be able to convince yourself that it’s just
|L||F|sin(§ — ¢), where |L| is the area of L, |F| is the length of F (the speed
of the fluid), and € the angle between the surface and F. Of course, this is
also |L||F| cos(0) or just |L|F - n. It’s just like in two-dimensional space.
Now, what if F varies from point to point, and what if the surface isn’t
planar? You know the drill: Slice and dice. Let’s denote the surface by S.
We’re going to chop S up into little pieces; each piece looks like a plane, has
area dA, and has some unit normal vector n. By the above reasoning, the
flux over this little piece is then F-ndA. The total flux of F over the surface

} /S F - ndA. 2)

Of course, we need to know how to actually compute this integral. In practice
the surface would be specified parametrically, as r(u, v) where u and v range
over some values. The field F would be given. We already saw how to cook
up dA. It’s just

dA = |r, X r,|dudv.

All we need is a unit normal vector n. Actually, we've already done this too.
Look at how we got dA. We started with tangent vectors r, and r,, took
their cross product, then took the magnitude of the cross product. But the
vector (note that I've written the A in boldface)

dA = dr, x dr,
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is normal to the surface. We can define a unit normal vector by dividing dA
by its own length, which is just dA:

dA  dA
n= ——=—.
[dA| ~ dA

This shows how to actually compute the flux in a specific case. Compute dA
and compute n. Both should be functions of the independent parameters u
and v. Stuff all this (with F) into the flux integral (which will be a double
integral in u and v) and evaluate.

There is one small simplification you can make. Note that ndA = dA,
so that the flux integral can also be written as

F-dA 3
/. (3)
which you’ll frequently see.

Example: Let’s use the torus defined previously. Let the vector field be
F(x,y,2) = (zry,—2+ 2,z +y). You can compute dr, and dr, to find

dr, = (2cos(v)sin(u),2sin(v)sin(u),2cos(u)) du,
dr, = (—sin(v)(5—2cos(u)),cos(v)(b — 2cos(u)),0)dv.

Compute the vector dA as dr, X dr, (use a computer!),

dA = (—10cos(u)cos(v) + 4 cos?(u) cos(v), —10 cos(u) sin(v) + 4 cos?(u) sin(v),
10sin(u) — 4 sin(u) cos(u)) du dv.

Now compute F-dA (and replace the z,y, and 2’s in F with the corresponding
u and v values). The quantity F - dA is a huge mess involving trig functions
of u and v. Integrate it over the appropriate v and v ranges and you find
that the total flux is 4072.

0.9 Notation

It’s frequently advantageous to think of the gradient operator as a vector, so
that in two dimensions
0 0

= (55 3y
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Of course you can modify this to suit other dimensions. The operator V
sits around waiting for a function; when it encounters one, it computes its
gradient.

Let F(x,y) = (Fi(z,y), F»(z,y)) be a vector field, and consider the quan-
tity V-F. What should that mean? If V is treated as a vector then a logical

interpretation is that
oF,  0F,
V- F=—+4—.
ox Jy
IMPORTANT: The above statement doesn’t contain any real meaning or
mathematics. It simply defines what we mean when we write V- F. In other
words, it’s a definition. The quantity V - F is called the divergence of the
vector field F, for reasons that will become clear.
Now, suppose that the vector field F is itself the gradient of some function
f,s0 F =V f. Then the divergence of F is

o*f  0°f

The quantity V-V f is called the Laplacian of f. You’'ll also see it written as
V2f (physicists like this) and as A f, which is the mathematicians’ favorite
notation.

Given a vector field F you can also compute the quantity V x F. T'll let
you figure out the details. It’s just the cross product. This quantity is called
the curl of the vector field F.

The V notation can be a real time saver, once you get used to it. We
are frequently going to manipulate expressions involving V, functions, and
vector fields. For example, consider the expression V(F - Vf), where F is
some vector field and f is some function. When you get used to the notation
you can easily see that when expanded

V(F-Vf) = (V -F)Vf+ (Af)F.

The alternative is to write everything out component-by-component, which
can be quite tedious. You should probably do this at first, but eventually
you’ll come to appreciate the brevity and power of the vector and V notation,
and you won’t have to write every component out.
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0.10 The Divergence Theorem

Suppose D is a region in 2 or 3 dimensions. We'll use the notation dD to
denote the boundary of D. Suppose F is a vector field defined on D, with
the first partial derivatives of F' continuous on the closure of D. Then the
divergence theorem states that

/V.dez F . dA, (4)
D oD
where dA (or the unit normal vector n) is chosen to point out of D.

Let’s look at a concrete example or two, then a more general case to try
to gain an understanding of what the divergence V - F tells us about a vector

field.

Example 1: Suppose that F(x,y) = (z,y), and let D be the unit disk
with boundary 0D, the unit circle. Here’s a picture of F superimposed over
D.
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It should be painfully obvious that the outward flux of the field is positive.
In fact, if we parameterize 0D as r(t) = (cos(t),sin(t)) for 0 < ¢t < 27 then
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dr = (—sin(t), cos(t)) dt, ds = |dr| = dt, and an outward unit normal vector
is given by n = (cos(t),sin(¢)). The flux over 9D is
2

F-nds= / (cos®(t) + sin®(t)) dt = 2.
oD 0

It’s easy to check that V - F = 2. Then you can set up a double integral to
compute

1 V1—z2
/V-dedx:/ / 2dy dr = 2
D —1J-V1—22

if you work it out. Of course, it must be the same as the flux of F over the
boundary.

Example 2: Suppose that F(z,y) = (—y,x), and again let D be the unit
disk with boundary 0D, the unit circle. Here’s a picture of F superimposed
over D.
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In this case the fluid spins tangentially to 0D, so the net flux is zero. Let’s do
the computation anyway. We again parameterize 0D as r(t) = (cos(t), sin(t))
for 0 <t < 2w, with dr = (—sin(t),cos(t)) dt, ds = |dr| = dt, and an out-
ward unit normal vector is given by n = (cos(t),sin(¢)). The flux over 0D
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is
2m
- F-nds = /0 (—sin(t) cos(t) + sin(t) cos(t)) dt =0
as asserted. It’s easy to check that V - F = 0. Obviously the integral of 0
over D is 0, consistent with the divergence theorem.

Let’s now try to get a feeling for what V-F really means. In a nutshell, the
divergence of a vector field measures how much the field “spreads out” near
a point. To help you see this, suppose that F represents the flow (velocity)
of some incompressible fluid in two or three dimensional space. Suppose P
is a point in space and D is a small ball around P, sufficiently small that we
can consider V - F constant on D. Then the flux of F over 0D,

F.-dA
oD
is the rate at which fluid is crossing D (with outward as positive) in area
per second (2D) or volume per second (3D). According to the divergence
theorem

[ FdA= /Dv-de ~ (V - F(P))vol(D)

where vol(D) means the volume of D. In other words, for a small region D

N flux over 0D

V-EP) A D)

But why would there be a net flux over 0D? Because inside D fluid is being
created (if the outward flux is positive) or destroyed (outward flux negative).
In three dimensions V - F has units of volume per unit time per volume.
In two dimensions it has dimensions of area per second per unit area. The
divergence of F at a point P in this case measures to what extent fluid is being
created near P (divergence greater than zero) or fluid is being destroyed near
P (divergence less than zero). For example, if in a region D the divergence
of F is a constant 3 cubic meters per second per cubic meter then this means
that during each second each cubic meter of volume in D produces 3 cubic
meters of fluid.

Of course in real fluid flow the volume of fluid is conserved if the fluid is
incompressible. In this case if F is the fluid velocity then F must have zero
divergence, so that

V-F=0.

This is the so-called continuity equation for the case of steady state flow.
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0.11 Green’s Identities

Green’s identities are really special cases of the divergence theorem that
turn out to be very useful for studying PDE’s. Suppose that v and v are C?
functions defined on some region D in two or three (or more) dimensional
space. Let 0D denote the boundary of D; in two dimensions 0D will be a
closed curve, while in three dimensions 0D is a closed surface. Consider the
vector field F = uVwv. According to the divergence theorem

/D V- (Vo) dV = /6 (uVv) ndA (5)

where n is an outward unit normal vector. But you can easily check (do it
component by component—it’s the product rule) that

V- (uVv) =Vu-Vo+ulAwv

and 5
(uVv) -n = ua—z
In this case equation (5) becomes
/(Vu kum})dv—/ ey (6)
D ~Jop On

This is Green’s first identity. A useful special case is when u = v, in which
case we have

ou
\V4 2 /A —
/D(| uf +u u)dV—/aDuandA 0
where |Vul|? is just Vu - Vu.

Take Green’s first identity (6) and reverse the roles of u and v to obtain

ou
/D(Vu-Vv—i—UAu)dV—/aDva—ndA. (8)
Now subtract equation (8) from (6) to find that
ov ou
/D(uAv—vAu)dV:/aD(u%—U%)dA. 9)

This is Green’s second identity.
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There’s also a third identity, but we’ll look at that later.

Example: Here's a simple example that’s consistent with Green’s first
identity. Suppose that D is the unit ball in two dimensions and u(z,y) =
2% + 3z + xy. Let’s compute both sides of Green’s identity and verify that
they’re the same. You can check that Vu = (3z% + 3 + y,x) and Au = 6z.
The left side of Green’s first identity, equation (6) (with appropriate limits
on the double integral) is

1 pV1-a?
/JW (152" + 372% + 1227 + 9 + 6y +y*) dy dz

which evaluates to %m Now let’s compute the right side. We can pa-
rameterize the boundary of the disk as r(¢) = (cos(t),sin(¢)). Then n =
(cos(t),sin(t)) and |dr| = dt. Then wu(cos(t),sin(t)) = cos?(t) + 3cos(t) +

cos(t) sin(t) on the boundary, and

gz = Vu-n = 3cos’(t) + 3 cos(t) + 2sin(t) cos(t)

and the product ug—ﬁ becomes, on the boundary,

WO 5 cos(1)+12 cos' (1) + cos* (1) sin(1) +0 cos* (1) 1-+sin() + 2 os? (1) sin’ (1)

If you integrate this from ¢t = 0 to t = 27 you get exactly 1%37T!
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