
Markov Chains
Introduction

Consider a fixed population in which, at a certain initial time, 10 percent of the population
lives in a rural setting, 60 percent live in the suburbs, and 30 percent live in an urban area.
We can represent the initial state of the populace as a vector x0,

x0 =




0.1
0.6
0.3


 .

Let’s refer to rural as “state 1”, suburban as “state 2”, and urban as “state 3”, so each
member of the population exists in one of these three states. Suppose also that each year
exactly 10 percent of the people who live in a rural setting move to the suburbs, 5 percent
move to an urban area, and the remaining 85 percent stay in a rural setting. Suppose also
that each year exactly 2 percent of the people who live in a suburban setting move to a rural
area, 25 percent move to an urban area, and the remaining 73 percent stay in the suburbs.
Finally, suppose that each year exactly 1 percent of the people who live in an urban setting
move to a rural area, 25 percent move to a suburban area, and the remaining 74 percent
stay in an urban setting.

At the end of the first year, what does the population distribution look like? Well, we
started with a fraction 0.1 of rural people, of which (0.1)(0.85) = 0.085 stayed rural. Of
the suburban dwellers (0.6 fraction at the start of the year) we have a fraction 0.02 moving
to the suburbs, a total fraction (0.6)(0.02) = 0.012 of the population. Finally, of the 0.3
fraction of urban dwellers, (0.3)(0.01) = 0.003 end up in a rural area. All in all at the end
of the first year the fraction of the population living in a rural area will be

(0.1)(0.85) + (0.6)(0.02) + (0.3)(0.01) = 0.1

the same as at the start of the year.
Similar computations show that the fraction of people living in the suburbs at the END

of the first year is
(0.1)(0.1) + (0.6)(0.73) + (0.3)(0.25) = 0.523

and the fraction of people living in urban areas at the END of the first year is

(0.1)(0.05) + (0.6)(0.25) + (0.3)(0.74) = 0.377.

Let x1 denote the population distribution at the end of the first year, so

x1 =




0.1
0.523
0.377


 .

A very convenient way to arrange the computations above is to simply note that x1 was
computed as x1 = Tx0 where

T =




0.85 0.02 0.01
0.1 0.73 0.25
0.05 0.25 0.74


 .
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This is a model in which there are three states. The vector x0 is called the initial state
vector and the matrix T is called the transition matrix. The matrix T quantifies how the
state vector changes from one iteration of the model to the next. In this case each iteration
is one year.

It’s not hard to see that the population distribution at the end of the second year will
be x2 = Tx1 = T2x0. More generally, the population distribution at the end of the nth year
will be xn = Tnx0.

Exercises

1. Note that the columns of T add up to one. Why?

2. What happens to Tn and xn as n gets large? Does the population distribution approach
a steady-state? What is it?

The General Case

Consider some “population” in which each individual can exist in any one of m different
states (mutually exclusive). That means that at any given time a certain fraction xk of the
population exists in state number k. The vector

x =




x1

x2
...

xm




summarizes the fraction of the population that exists in each state. We’ll use x0 for the
initial state of the population. Suppose that at each iteration of the model a fraction Tji of
the individuals in state i move to state j. Then at iteration n + 1 the population state is
related to that at iteration n by the equation

xn+1 = Txn

where

T =




T11 T12 · · · T1m

T21 T22 · · · T2m
...

Tn1 Tn2 · · · Tnm




As in exercise 1 above, the columns of this matrix must sum to one.
These kinds of models are an example of Markov Chains. Of particular interest in most

situations is the long-term behavior of the state vector xn. It can be shown that under
certain reasonable conditions the quantity Tnx0 must converge to a vector b which is a
steady-state, i.e., Tb = b, so b represents a population distribution which never changes.
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Exercise

3. Markov chains are often used to model epidemics. Suppose that each member of a
population exists in one of three states. State 1 (which we’ll denote S for “susceptible”)
is the state in which an individual has never had a certain disease and can catch it.
State 2 (which we’ll denote I for “infected”) is the state in which an individual actively
has the disease. State 3 (which we’ll denote R for “recovered”) is the state in which an
individual has recovered from the disease and is permanently immune. This well-known
model is called the “SIR” model for epidemics.

Suppose the transition fractions are T11 = 0.9, T21 = 0.1, T31 = 0.0, T12 = 0.0,
T22 = 0.05, T32 = 0.95, T13 = 0.0, T23 = 0.0, and T33 = 1.0.

(a) Write out the transition matrix T. Why do all of the zero transition fractions
above make sense?

(b) In a Markov model a state is called absorbing if an individual can never leave that
state. Which state in this model is absorbing?

(c) Start with any initial state vector x0 you like (but make sure its entries add to
one). Compute T100x0. What happens? Interpret it in plain English—does it
make sense?

(d) Modify the transition matrix so that who have recovered have a 0.05 chance of
re-infection (but can’t become susceptible—that state is reserved for those who
have never been infected). Re-compute T100x0. Any difference? Interpret!

4. (Extra Credit) To the SIR model above (with no reinfection possible), add a fourth
state: “dead”. Suppose that T41 = 0, T42 = 0.07, T43 = 0.0, and of course T44 = 1.0.
Also assume that of the infected people, 5 percent will remain infected, 88 percent will
be recovered. Write out the transition matrix T. Pick an initial state vector corre-
sponding to a completely healthy populace and compute Tnx0 for large n. Interpret
the results. What percentage of the population will ultimately die as a result of the
disease?
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