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1 Introduction

You may have noticed that when we analyzed the heat equation on a bar of
length 1 and I talked about the equation %1; — % = 0 holding on the bar, I
always used the strict inequalities 0 < x < 1, NOT 0 < z < 1. T also stated
that the equation should hold for £ > 0, not ¢ > 0. I made similar remarks
for the wave equation and Laplace’s equation, and used strict inequalities to
define where the PDE should hold, rather than weak inequalities.

This is generally true: when analyzing a PDE on a region D, we don’t
generally talk about the PDE holding true at the boundary of the region—in
fact, this is usually a meaningless statement, for reasons I'll explain below.

You may also have noticed that when we require a solution to a PDE
to assume certain boundary or initial values, we don’t always get quite
what we want. For example, in solving Laplace’s equation with Dirichlet
boundary data on the unit disk we didn’t really obtain u(1,0) = h(#),
at least not in the pointwise sense. Rather, all we could generally as-
sert is that lim, ;- ||u(1,-) — k| = 0. This last statement does not force
lim, ;- u(1,0) = h(#) for any particular 6!

These are somewhat subtle but important issues that I've put off until
now, when we have a number of examples that illustrate what’s going on.

2 Domains and Derivatives

2.1 Open and Closed Sets

Given a point z in R™ we use the notation B, (z) to denote the set of points
y such that |z — y| < r, where “|x — y|” is the usual Pythagorean distance
(Xj(z; — y;)?)"/2. The set B, (z) is called an open ball of radius r around z.
Obviously B,,(z) C B,,(x) if r; <.

A subset D of R" is called open if, given any point z € D, there is some
r > 0 such that B,(z) C D. The open ball B,(z) in IR is just the interval



(x — 7,z + 7). In fact, any interval (a,b) in the reals is open by the above
definition (check this!)

Although we don’t need this definition, a subset D of R" is called closed
if R" \ D is open. But a set can be neither open nor closed, e.g., [a,b).

There are various ways to define the boundary 0D of a set D. Here’s
one: We'll say that € 9D if EVERY ball B,(z) contains points in D and
points in R™ \ D. The closure of a set D, written D, is the set D U (9D).
It’s worth noting that if x € D then we can pick a sequence of points in D
that converge to x. Try proving this from the definition of 0D!

A set D C R" is connected if any two points in D can be joined together
by a continuous curve which doesn’t leave D—intuitively, D consists of a
single piece or “component.”

Finally, a domain D in IR" is an open connected set. The set D need not
be bounded. However, if D is in fact unbounded people will often refer to it
as an “unbounded domain.”

2.2 Derivatives in R

I've used the notation C* somewhat informally so far, to mean that a function
has at least k£ derivatives, all continuous. Let me make this a bit more precise,
especially in regard to open and closed sets.

Just as a reminder, if f is a function defined on some open ball B,(xg) in
IR"™ we say that f is continuous at xg if

Jim f(2) = f(zo).

Let’s start in just R. Let I denote the open interval (a,b). We say that a
function f € C*(I) if f is defined at all points in I, f is k times differentiable
at each point in I, and the derivatives are all continuous functions on I.
The case k = 0 is used to indicate simply that a function is continuous, and
k = oo means the function is infinitely differentiable, that is, f € C*(I) for
all £ > 0.

As an example, let I = (0,1). The function f(x) = 1/ is in C*(I) for
all k, that is, f € C°°(I). The vertical asymptote at x = 0 isn’t a problem,
because z = 0 isn’t in I. Note I can also legitimately write f € C37(I),
because f indeed has 37 continuous derivatives on I. We can say a function
is in C*(I) even if it has more than k continuous derivatives—it just has to
have at least k.



Now let I = [a, b], a closed interval, and f a function defined on I (includ-
ing the endpoints). We say that f is continuous on I, and write f € C°(I),
if f € C%a,b) (f is continuous on the open interval) and if

fla) = tim f(z). F() = lim f(). )
However, suppose that f is some function defined only on an open interval
I = (a,b) but not at the endpoints, and f € C°(a,b). It may be possible to
extend f to a continuous function on the closed interval I = [a,b]. Specifi-
cally, if both one-sided limits in equation (1) exist we can take them as the
definition of f(a) and f(b). In this case f extends to a function C°(I). Tech-
nically since the domain of f has changed we should rename the function,
but no one ever does.

Here’s some examples. Let [ = (0,1) and let f be defined as f(z) =
xIn(z) on I. This function IS continuous on I, but it can actually be extended
to a continuous function on I = [0,1], by setting f(0) = 0 and f(1) = 0.
Just graph f or compute the limits! But note that the original definition of
f, which involves the log, doesn’t allow us to just plug in x = 0.

Here’s another example: let I = (0,1) again, but take f(x) = 1/x. The
function f € C°(I), but we can’t extend f to be continuous on the closed
interval, since lim, o+ 1/2 doesn’t exist. We could extend to x = 1, though.

Given a closed interval I = [a,b] in R we'll say that f € C¥([a,b]) if
f € C*(a,b) and every derivative f) for j < k can be extended to be
continuous on the closed interval [a, b].

2.3 Derivatives in R"

I defined above what it means for a function f of n variables to be continuous.
Given an open set D in R" we'll say that f € C°(D) if f is continuous at
each point x € D. Of course this assumes that f is defined at each point in
D.

Suppose that f is defined on D, the closure of D. We'll say that f €
C%D) if f € C°(D) and if

lim f(x) = f(zo)
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for each point xy € 0D, where x approaches z( from inside D (that is, z must
stay in D as it approaches xp). As in IR, it may be the case that a function



f defined on some open set D can be extended to a continuous function on
D.

Let D be an OPEN set in R" (so around any point x in D we can put a
small ball B,(z) that is contained in D). Let f be a function defined on D.
We'll say that f € C™ (D) if all partial derivatives
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where k; + - -- —I—_kn = k exist and are continuous, for each £ < m. We’'ll
say that f € _Ck(D) if each of these partials can be extended to a continuous
function on D.

3 Back to PDE'’s

3.1 Why Open Sets?

Consider the following boundary value problem: Find a function u which
satisfies

for 0 < x < 1 (note the strict inequalities) with the boundary conditions
u(0) = 0 and u(1) = 0. These last two boundary conditions are to be
interpreted in the sense that we want

xlir(r)l+ u(x) =0, $1Lr{17 u(z) = 0.
You can check that the unique solution is given by u(x) = zIn(x).

But what if I'd worked on the closed interval [0,1]? The first problem is
that 1/x isn’t defined on this interval, and can’t be extended, so uv”(z) = 1/x
is meaningless on this interval. But even if you ignore that problem, the
solution we found is not twice-differentiable on [0, 1] (more precisely, can’t
be extended to C%([0,1])). If we’d tried to work on [0, 1] we’d have to conclude
that there is no solution.

This is a typical example of why we don’t ask for a solution to a PDE (or
even an ODE) to actually satisfy the PDE on the boundary of the region. If,
for example, the PDE is second order, then asking for the solution to satisfy
the PDE on the boundary is to require the solution to have second derivatives



that extend continuously onto the boundary of the region. This is asking too
much—it won’t likely happen. And the boundary or initial conditions will
only involve the function or its first derivatives anyway, so why ask for two
derivatives when only one (or none) are needed?

As another example, consider solving Laplace’s equation on the OPEN
unit disk D in IR?, with Dirichlet boundary data h() = 6(27 —6) (where the
boundary is parameterized in the usual way, z; = cos(f), zo = sin()). The
function h is smooth around the boundary of the disk, except at 8 = 0 (same
as 0 = 2m) where h'(0) = 27 while h'(2r) = —27. The harmonic function
u(r,0) with u(1,0) = h(#) is C>=(D), and can be extended to C°(D), but u
cannot be extended to C*(D). If the latter were possible then h would be
once differentiable on 0D, but it’s not. So if we required the solution u to
satisfy Au = 0 in D, we'd need u € C?(D), and there’d be no solution.

Here’s one last example concerning solution regularity and how it’s some-
times denoted. We showed (or actually, you will show on the next test) that
if u is harmonic on an open region D then u € C*(D). If D is a disk in IR?
then from the Poisson integral formula we can see that if the Dirichlet data
h is continuous, © must be continuous up to and onto dD. Such a statement
would typically be written as u € C>(D)NC°(D), to indicate infinite differ-
entiability on the open region and a continuous extension to the closure of D.
Exercise: Consider solving the heat equation %1; — % =0for -1 <z <
1 with boundary conditions u(—1,¢) = wu(1,t) = 0 and initial condition
u(z,0) = |z|. What goes wrong if we actually require 2% — % =0 AT time
t=07

3.2 Classifying PDE’s

We've studied three main PDE’s in this course: Laplace’s equation, the heat
equation, and the wave equation. These are the “big three” PDE’s from
classical physics, and their solutions behave quite differently.

Consider a general second order constant-coefficient homogeneous PDE
in two variables (the following ideas extend to n variables and variable coef-
ficients) which I'll call 2 and y

C11Ugy + C12Ugy + Co2Uyy + ciuy + Colly + cou = 0.

Each such PDE fits into one of three categories, depending on the relative



values of ¢q1, ¢12, and coo; the coefficients for the lower order terms are irrel-
evant:

1. Elliptic: This is the case if ¢11c99 — 0%2 > 0 (then the graph of the conic
section 1102 + c1o7Y + C20y* + 1T + oy + ¢ = R is an ellipse). For
example, Laplace’s equation (c1; = co2 = 1,¢10 = ¢1 = 3 = ¢9 = 0) is
elliptic. Indeed, any equation of this form can be turned into Laplace’s
equation with a suitable change of variables.

Elliptic equations have solutions which are C'*° inside the domain in
which the PDE holds, and obey the maximum principle. The required
boundary conditions are just like for Laplace’s equation, i.e., you need
to specify the function values or normal derivatives on the boundary of
the domain.

2. Parabolic: This is the case if ¢i1c90 — 3, = 0 (then the graph of the
conic section 1122+ 1wy + Coay? + 12+ oy +co = R is a parabolic). In
this case it’s more intuitive to let ¢ denote the second variable instead
of y. The heat equation (c;3 = —1,¢c0 = 1,00 = 19 = ¢; = ¢9 = 0) is
parabolic.

Parabolic equations also have solutions which are smooth inside the
domain of definition (typically something like z € (a,b),t > 0), and re-
quire boundary/initial conditions like the heat equation. The solutions
obey the same maximum principle, and like the heat equation infor-
mation propagates with infinite speed. Rough initial data is instantly
smoothed out.

3. Hyperbolic: This is the case if ¢j1c99 — c%z < 0 (the conic section is
a hyperbola), and in this case it’s also more intuitive to let ¢ denote
the second variable instead of y. The wave equation (c1; = —1,co0 =
1,¢12 = ¢1 = ¢3 = ¢o = 0) is hyperbolic.

Again, hyperbolic equations have solution that are “wave-like”; in par-
ticular, some kind of causality holds so information travels at finite
speed. Also, rough initial data gives rise to rough solutions for all
time, in contrast to the parabolic case.

These classifications extend to PDE’s with n variables, and even variable
coefficients. But not every PDE fits this classification. It’s more problematic
to classify PDE’s of other orders, or with nonlinearities.



