Steepest Descent
MA 348
Kurt Bryan

A Calc IITI Refresher

A one-dimensional curve C' in n-dimensional space can be described parametrically by
giving each coordinate xj as a function of a single variable, say ¢, as (x1(t), z2(t), ..., x,(t)).
If we let boldface variables denote vectors, so x = (z1,...,%,), then a curve is described
parametrically as x = x(¢). Any curve has infinitely many parameterizations. You can think
of x(t) as describing the motion of a particle along the curve C' as a function of time t.

Now consider a function f(x) of n variables and a curve C' parameterized by x = x(t).
Along the curve C' the function f itself becomes a function of ¢, as the composition f(x(t)) =
f(x1(t), x2(t), ..., x,(t)). If we differentiate f(x(f)) with respect to ¢ we obtain, by the chain
rule,

i) = pl iy IS
ry dt ox,, dt
which is just the rate at which f changes along C' with respect to t. This can also be written

as a dot product
dx

I (1)

d
() = V()

where the vectors V f and Cfl—’t‘ are defined as
dx_ fdo o din
da— \dt’7 dt

Vi - (af. 3f>.

oxy ' Ox,

We'll also use the notation x’ for ”C%‘. Geometrically, x’ is a tangent vector to the curve
parameterized by x(t) = (z1(t),...,z,(t)), or X'(t) can be thought of as the velocity of a
particle moving according to x(t) (with ¢ as time). The gradient vector V f at any point
x points in the direction in which f increases most rapidly near x (more this below). The
quantity V f - x" is called the directional derivative of f in the direction x', and is simply a
measured of how fast f changes along the curve C' as a function of ¢.

Example: Let f(z1,29,73) = x179 — x3. Consider a curve parameterized by z; = 12,

Ty = t+ 3, z3 = t* +t, or just x(t) = (¢*,t + 3,t*> + t) in vector notation. Then we

have x(1) = (1,4,2) and x'(1) = (2,1,3). Also, Vf(1,4,2) = (4,1,—4). Thus when

t = 1 the function f(x(t)) is changing at a rate of (4,1,—4) - (2,1,3) = —3. You can

also check this directly by noting that f(x(t)) = t3(t +3) — (£* + t)? = —t* — 3 + 2{2, so0

L(f(x(t))) = —4t> — 3t? + 4t and at ¢ = 1 this is —3.
Recall that for vectors v and w we have

v-w = |v||w|cos(0)

1

where |v| is the length of v, |w| is the length of w, and 6 is the angle between the vectors
v and w. From this it follows that

Vf-x'=[Vf|[x|cos(f) (2)

where 0 is the angle between V f and x’. This makes it easy to see that of all possible curves
C parameterized by x(¢) and passing though a given point p with |x'| fixed (which describes
a particle moving at some fixed speed), the choice for x that maximizes the rate of change of
f along C' at p is obtained when 6 = 0 (so cos(f) = 1), i.e., X’ should be parallel to V f(p).
The direction parallel to V f(p) is called the direction of steepest ascent.

On the other hand, if x" is opposed to V f (so § = 7) we see from equation (2) that the
directional derivative is minimized. The direction of —V f is the direction of steepest descent.
If x’ is orthogonal to V f at some point then from equation (2) the function f is (at least
momentarily) constant along the curve C' at this point.

The gradient V f has a nice relation to the level curves or surfaces of f (curves or surfaces
of the form f(x) = ¢ for a constant c): the gradient is always orthogonal to the level curves.
This fact is illustrated by overlaying a contour plot of f and a plot of Vf, in this case for
f(x1,29) = 2179 + 23 + 235 /5 — 3sin(xy):

The Method of Steepest Descent

The method of steepest descent is a very simple algorithm that you yourself would have
invented for optimization, if only you’d been born before Cauchy. A notational note: T’ll
use boldface x;. to refer to a point in n dimensions, while normal typeface x; mean the kth
component of a point x.

Here’s how steepest descent works for a differentiable function f(x):

1. Make an initial guess xq at the location of a minimum; set a loop counter k£ = 0.

2. Compute a vector dy = —V f(xx). The vector dy is called the search direction. Note
that it points downhill from the point x; in the steepest possible direction.

3. Define a line x(t) = x;. 4 td; passing through x;, in the direction dj. Minimize g(t) =
f(x(t)); note that this is a one-dimensional optimization problem, so you can apply
any 1D technique you like. This step is called a line search.

4. If the minimum of g occurs at t = t* then set x; 1 = x(t%).

5. If some termination criteria is met, stop. Otherwise, increment k£ = k£ + 1 and return
to step 2.

The figure below shows a contour plot of the function f(z1,zs) = 22 + 2125 — 3sin(xy) +
x3/5, together with a plot of the progress of steepest descent started at (—4, —2). The 1D
line searches were done with Golden Section and the algorithm terminated after 12 itera-
tions, at the point (—0.812,1.625). This is a local minimum of f, to 3 significant figures.

There is one key feature of steepest descent that is worth noticing: at the end of each
line search the algorithm ALWAYS make a right angle turn—the new search direction dj,
is always orthogonal to the previous search direction d;. It’s easy to see why. To obtain
xg+1 we searched along a line of the form x(t) = xj, + tdy, where x; was our previous “base
point”. At a minimum ¢ = ¢* of the function f(x(¢)) we must have that d(f(x(t)))/dt =0,
which by equation (2) (and note x'(¢) = d;) means that

x' - Vf(x(t) = di - Vf(xp11) = 0,

where X1 = x(t*) is the new base point. Thus the new search direction dgy1 = —V f(Xk+1)
must be orthogonal to the old search direction dy = —V f(xy).

Steepest might seem to be “optimal”. After all, what could be more efficient than re-
peatedly going downhill in the steepest possible direction? Unfortunately, this turns out to
be strangely inefficient. Consider Rosenbrock’s function f(xy,z5) = 100(zy —23)? 4 (1 —1)?
with steepest descent initial guess xo = (—1,—1). Below is a plot of 200 iterations of the
progress of the algorithm toward the true minimum at (1, 1):

Doesn’t look too bad—the first few line searches seem to make good progress. But let’s
zoom in on the line searches once we're in the valley leading to the point (1,1):

0.6i

0.5i

L L
SIS AT

x20.4- .

0.3-

\\\\\\

02~
0.4

Now you can see that steepest descent wasn’t so efficient in its progress toward the minimum;
it zigzags wastefully back and forth.

This is somewhat similar to the first algorithm we looked at for minimizing functions of
n variables: minimize in one coordinate at a time. The problem with that algorithm was
that being forced to move at all times parallel to a coordinate axis can lead to very slow
convergence if we need to move diagonally. Something similar is happening here: We need
to move in a certain direction to make progress toward the minimum, but we must always
make a right angle turn at the conclusion of each line search. This narrows our choice of
search directions—in effect, the direction of the first line search limits our choice for all future
line searches, and may exclude the choices that lead rapidly to a minimum. In the figure
above we want to move diagonally toward (1, 1), but our choices for the search direction
do not include the directions we need. As a result we have to zigzag back and forth across
the proper direction, slowing our progress. This inefficiency is why the method of steepest
descent is rarely used as is. There are methods which require little more computation than
steepest descent and yet which converge much more rapidly.

Still, steepest descent is the basic model algorithm for what is to follow. The key to
improving steepest descent is to make a small change in how we pick the search direction
for each line search.

