Scaling
Mathematical Modelling Week 2
Kurt Bryan

Scaling

Suppose we have a physical system governed by a differential equation,
for example, a mass of m Kg attached to a spring with spring constant k
Newtons per meter. The relevant differential equation is

d*x
mﬁ(t) + kx(t) =0 (1)

where ¢ is time in seconds and z(t) is the position of the mass (meters).
Suppose the initial conditions are x(0) = xy meters and z’(0) = vy meters per
second. In mathematical modelling it is often useful to scale a problem, that
is, to reformulate the problem in terms of a new independent and dependent
variable(s), say ¢ or Z. The new variables are usually linearly related to the
original variables and non-dimensional.

Why do this? If in the equation above we use MKS units with m = 1 Kg
and £ = 1 Newton per meter, then the period of the spring-mass system is
about 6.28 seconds; it would make sense to measure time in seconds, rather
than microseconds (way to short) or years (way to long). If on the other hand
the equation governs an electrical circuit then measuring time in microsec-
onds might be appropriate, or even too slow. Scaling is a way of changing
our system of units to adapt to the natural scale of the problem. Scaling also
makes the equations non-dimensional, independent of any particular system
of units. Proper scaling can also make it much easier to solve a problem
numerically, since poorly scaled problems tend to be numerically unstable.

An example is the best way to see scaling work.

Example
Consider the second order mass-spring ODE (1) above. First, let’s worry

about rescaling the independent variable time ¢, then we’ll think about rescal-
ing x too. Want to rescale time t to construct a new dimensionless variable



t according to
t
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where t, is some constant with the dimension of time. The constant %, is the
time-scale of the original problem, and should reflect how quickly or slowly
things happen in the physical process. The physical constants in the DE are
m, k, and A with dimensions [m] = M, [k] = MT~2, and [A] = L. It seems
reasonable that the time scale t. should depend on these physical parameters,
so we try to form ¢, from m, k, and A as t. = m*kP A?. If dimensions are to
balance, this means that

[m°kP A = MeMPT~%°17 =T

so that a+ 03 =0, =26 =1, and v = 0. This forcesa =1/2, 5 =1/2,7=0.

We then have
R
¢ k

as the natural time scale for the problem. The new independent variable will
bet =t/ \/% as defined by equation (2). Note that ¢ is dimensionless.

This changes the DE. Define the function Z(t) = z(t) = z(t.t); T is just
x measured in our new system of units. Then by the chain rule

dzx _ dx

at — dt’
d*z ,d*x
dt? ¢ dt?

The DE for x(t) becomes, in terms of Z(t),

d*z

ﬁ(t)Jrf(f) =0 (3)
with initial conditions z(0) = A, z/(0) = 0.

Exercise: Carry out a similar analysis, this time trying to scale x instead of
t. we can then define X (t) = x(t)/x. = z(t.t)/z., where z. is some constant
with dimension length, formed from m, k and A. The new DE should still be
the same as equation (3) but now with initial conditions X (0) = 1, X’(0) = 0.



Because the variables ¢ and X are dimensionless, we say that this prob-
lem has been reduced to dimensionless form. The solution to (3) is of the
form X (f) = c;sint + ¢y cost. Scaling the problem gives valuable insight
into the physics of the problem. For example, if we intend to measure X (%)
periodically in order to estimate the motion of the system, we might need to
measure about 20 times over one cycle of length 27, so that we’d measure X
three times for every unit change in £. This means that in the original prob-

lem we’d need to measure z(t) about 3t. = 3y/m/k times per unit change in t.

Problems:

1. A ball of mass m is dropped from some height. Let’s assume that the
force on the ball is due to gravity mg plus air resistance, and that air
resistance is proportional to velocity v(t), so the force of air resistance
is —kv(t) for some positive constant k. From Newton’s Second Law
F = ma we obtain mg — kv(t) = mv'(t), or

V'(t)=g— Tl:Lv(t).

If the ball is dropped at time zero then v(0) = 0.

Find the dimensions of the constants m, g, and k. What is the appro-
priate time scale t. for this problem, in terms of g, k£, and m? What is
the appropriate scale v, for v itself?

After you find ¢. and v, define a rescaled dimensionless velocity V() =
v(tct)/ve, where ¢ = i is dimensionless time. Find the DE satisfied by
V. Hint: it has no constants left in it at all.

If the ball has a mass of 0.1 Kg and a terminal velocity of 70 meters
per second, are the constants ¢, and v.?

2. A decent model for the growth of the U.S. population from 1790 to
1950 is given by the first order DE (see Braun, Differential Equations
and Their Applications, section 1.5)

dr _
dt
with @ = 0.03134 and b = 1.5887x 10719, The units on a are years—* and
the units on b are yeaurs_lpeoplef1 (so the dimensions in this problem

az(t) — bx(t)?
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are time and “people”). What is an appropriate time scale t. for this
for this problem in terms of a and b?. What is the appropriate scale x.
for 7 What is the rescaled differential equation?

Dropping Negligible Terms

One of the more important uses of scaling is to help us decide when
certain parts of a model or certain terms in the governing equations are
small and therefore “negligible.” When the governing equations for a system
are nonlinear we often want to drop the nonlinear terms, but this is valid
only if their effect is small enough. Proper scaling helps to quantify how
small they should be.

Consider a spring-mass oscillator with a nonlinear spring. Let the dis-
placement of the mass from its rest position be denoted by x(t), where ¢
is time. The mass is m and the spring exerts a restoring force equal to
—kx — bx3, a so-called “hard” spring; this spring is nonlinear. Suppose the
mass is displaced by an amount A and released with no initial velocity at
time t = 0. A simple F' = ma argument shows that the governing DE and
initial conditions are

ma” + kx +bx® = 0,
z(0) = A,
Z'(0) = 0.

This equation is nonlinear and can’t be solved in any simple closed form.
However, if the nonlinear bz® term wasn’t present then this would be a sim-
ple harmonic oscillator. Can we safely ignore that term? Let’s consider the
case where m = 1, k = 1, b = 0.01 and A = 10 in some system of units.
In this case it appears that the nonlinear bz? term is quite small; maybe we
really can ignore it.

Exercise: Use computer package to solve the above equation with £ = 1,
m=1,b=0.01, A=10for t = 0 to t = 10. Solve again without the ba?

term. Did the nonlinear term make much difference?

Now let’s try scaling the problem. There is one obvious choice for scaling
the length of the problem, and it is x. = A, the initial displacement. To scale
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with respect to time we look for a quantity ¢, = k“b*mYA° with dimension
time. The usual analysis leads to

te = k7P71200/m A%

where  can be any number. Let’s take the simplest choice, § = 0, so
that t. = \/m, just as for the harmonic oscillator. Now define Z(f) =
z(t)/x. = z(tt)/z.. The chain rule shows that d?z/dt* = t?/x.d*x/dt>.
Plugging all this into the DE satisfied by x shows that x satisfies the scaled
non-dimensional equation

' +z+er’ = 0,
z(0) = 1,
#'(0) = 0,

where € = bA?/k. Note that € is dimensionless. It’s now clear when the
nonlinear term can be neglected; we need € << 1. This gives the condition
bA?

- << 1 (4)

for dropping the nonlinear term.

Exercises:

1. What was € for the specific choices of constants in the previous exercise?
Adjust the value of one of A, b, or k to make ¢ = 0.01 and redo the
previous problem (compare the solutions to the linear and nonlinear
problem). Do the solutions to the nonlinear and linearized equations
have better agreement?

2. Suppose a mass m on a spring with restoring force —kz experiences
a friction or resistive force equal to —bx’. The initial conditions are
z(0) = A, 2/(0) = 0. Rescale the problem to the nondimensional form
2" +ex’+x = 0 with appropriate initial conditions. What is € in terms of
k,b, A? Compare the damped and undamped solutions for a few values
of €, say over the first 5 cycles. Under what conditions (analogous to
equation (4)) on b,k, A can we reasonably ignore the damping for 5
cycles?



