Random Variable Facts

Continuous Random Variables

Let X be a continuous real-valued random variable, i.e., any sample of X
yields a real number. T’ll use the notation P(event) to denote the probability
that “event” occurs. The probability density function (pdf) f(z) for X is that
function for which

b
Pla< X <b) = / f(z)dx. (1)

Of course we require that f > 0 and that f integrates to 1 over the whole real
line. This forces f(x) to approach zero as x goes to plus or minus infinity.
The cumulative distribution function (cdf) F'(x) for X is defined by

F(b) =Pz <b).
But this implies that

Fb) = /_ ; f@)do

and differentiating both sides (and using that f limits to zero) shows that
F’ = f, ie., F is an anti-derivative for f.

Change of Variables

Suppose that X is some real-valued random variable with pdf f and cdf F'.
Let Y = ¢(X) for some function ¢. Then of course Y is also a random variable,
and you can compute the pdf and cdf for Y from ¢ and f (or F).

To do this let’s assume that ¢ is invertible on its range, so that if y = ¢(x)
we have x = ¢~ 1(y). In fact, let’s suppose also that ¢ is strictly increasing, so
that < y if and only if ¢(x) < ¢(y). Thus, for example, we won’t deal with
#(x) = 2?2 here, but ¢(z) = e or ¢(x) = In(z) are OK. Actually ¢(z) = 22 is
also OK too if the domain of ¢ is limited to = > 0.

Let 1 denote the inverse function for ¢. Start with the statement

P(a<X<b)=/bf(x)dm.

Now if Y = ¢(X) then a < X < b is equivalent to ¢(a) <Y < ¢(b), so we have

b
P(¢(a) <Y < ¢(b)) = / f(x) dz.

Let ¢ = ¢(a),d = ¢(b), or equivalently, a = 9(c) and b = 9(d). The above
equation becomes
p(d)
P(C<Y<d):/ f(z) dx.
P(e)



Do a change of variable in the integral: Let y = ¢(z), so © = ¢(y) and dx =
¥'(y) dy. The change of variables yields

d
Ple<Y <d) = / F) ¥ () dy.

Compare the above equation to (1): This shows that the pdf for Y is the func-
tion g(y) = f(¥(y))¥'(y). Taking an anti-derivative shows that the cdf for Y is

G(y) = F(¥(y)).

Mean, Variance, Central Limit Theorem

The mean p (or expected value E(X)) of a continuous random variable X
is defined by
u:E(X):/ zf(x)dz.
— o0
Informally, the mean is the “average” value the random variable takes. The
variance (V(X) or 0?) is defined by

V) =0t = [ w2 de
— 00
and measures the “spread” of the random variable. It’s actually possible for the
mean and/or variance of a random variable to be infinite, although we won’t
encounter such pathologies.
As it turns out, if Xq,..., X, are independent random variables then

E(Xi+ - +X,) = BE(X)+ - +E(X,), V(Xi+ - +X,) =V(X)+ 4V (X,).

Also, E(cX) = cE(X) and V(cX) = ¢?V(X) for any constant c.

Let X1,---, X, be independent random variables, all with the same distri-
bution, finite mean p and variance 0. The central limit theorem says that if
we define a random variable

X1+ + Xy —np
vn

then in the limit that n goes to infinity Z is a standard normal random variable,
that is, Z has pdf

7 =

A standard normal random variable has mean 0 and variance 1.



