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The Classical Particle in a Box

Consider a particle of mass m constrained to move along the x axis under
the influence of some potential function V'(z,t), where t is of course time.
The force on the particle at any time is —%—‘;(m,t). From Newton’s second

law F' = ma the classical model for the particle’s motion is

mi(t) + aa—‘;(x(t),t) =0 (1)

where x = z(t) is the position of the particle at any time. With appropriate
initial conditions (position, velocity) we can solve the second order DE (1)
to find the particle’s position at any later time.

It’s worth noting that the total energy E(t) of the particle at any time,
kinetic plus potential, is given by

B(t) = Gmi (1) + V(x(t) ) 2)

It’s easy to check that if equation (1) holds and V' is independent of ¢ then

% = 0, so the total energy is conserved.

The Quantum View

In quantum mechanics the particle’s physical state is governed by a wave
function (z,t). The function ¢ (x,t) is complex-valued, and one interpreta-
tion of v is as a probability density. Specifically, if we measure the position
of the particle at time t then the probability of finding the particle between
x =a and x = b is given by

b
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Of course this means that

/ @ Pd =1 (4)
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at all times.
The function ¥(x,t) is a solution to Schrodinger’s equation,
oy h? 0%
ROV O
ot + 2m Ox? Vy (5)
where V' is the potential function (real-valued). Of course the condition (4)
forces

lim_4(z,1) = lim $(z,1) =0 (6)
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at all times ¢. The same holds true for the spatial derivatives of 1.

Note that equation (5) is linear, so that any solution can be re-scaled by
multiplying by an appropriate constant to satisfy equation (4) at any specific
time. Moreover, once normalized for any given time, the solution will stay
normalized for all later times, for

d [ d [
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where we’ve made use of equation (5) to substitute out 1, and 1/, (and slipped
the time derivative inside the integral, which is permitted if v, exists and is
reasonably well-behaved). If we now integrate by parts in z in each term in
equation (7) and use equation (6) (to take a derivative off of ¢,,, put it onto
1) we obtain

B

—0o0

(|¢$|2 - |¢x|2> dx = 0.

Once 9 has been normalized as in equation (4) for any time ¢, it will remain
normalized.

Observables and Operators



If we measure the position of the particle at any time, we don’t obtain a
deterministic result. The position of the particle is a random variable with
density function [¢|*(z,t); if we imagine a large ensemble of independent
particles all of which are in “identical” states (i.e., have the same wave func-
tion), position measurements on any given system will yield random values
with density function [¢(x,)|>. The expected value < x > of the position
measurement (if taken at time t) comes straight from standard probability
theory and is given by

(o)
<r>= / z|Y(z, )| dr. (8)
—0oQ
Of course if position is not deterministic then it isn’t clear how velocity
should be defined. Nevertheless, we can try to define velocity as the derivative
of < x > with respect to t; velocity itself then becomes a kind of random
variable. From equation (8) we can compute
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where equation (9) follows in almost exactly the same manner as equation
(7)—there’s just an extra “x” along for the ride under the integral. If we
integrate each term by parts above, to take a derivative off of 1., or ¥y,
and put the derivative onto 2¢) or x1), we find (after some cancelation, and
assuming that ¢ and its derivatives vanish at infinity) that

d<x> ih

Integrate the first term by parts again, to transfer the x derivative onto v to

find that J
der>_ / Tty de (11)

Actually, it’s more conventional to work with momentum p = muw, rather

than velocity. In this case we might write < p >= m9%=2 and obtain

<p>=—ih /OO b, dz. (12)
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This is the expected value of the momentum of the particle.
Finally, though, let’s write both of equations (8) (expected position) and
(12) (expected momentum) in the more telling forms

<r> = /00 Y d (13)
“_(h 0

Given a function ¢ € L*(—o00,00), let M denote the densely defined
unbounded operator M ¢ = x¢(z), and let D denote the densely defined un-
bounded operator D¢ = %%. Equation (13) states that in order to compute
< x > at any time we should take the wave function v for the system, apply
the operator M (in the z variable), then take the inner product of M1 with

. In short, equation (13) can be abbreviated
<z >=< My, > (15)

in standard mathematical Hilbert space notation. The operator M is called
the “position operator”. In the same vein, equation (14) states that < p >
is computed by applying the “momentum operator” D to v, then taking an
inner product with . Thus

<p>=< Dip,ap > . (16)

Actually, physicists prefer the so-called “bracket” notation, and would
write < z >=< ¢|M|¢) > or just < z >=< Y|z|tp >, and < p >=< ¢|D|¢p >
or <p>=<¢Y[2L[y >.

Equations (15) and (16) illustrate one of the most important facets of
quantum mechanics: classical physical quantities are replaced with oper-
ators (generally densely defined and unbounded) that operate on a sys-
tem’s wave function to produce expected values of the system’s observables.
Schrodinger’s equation dictates the time evolution of the wave function for
the system.

It’s also worth noting that we can not only compute expected values, but
also variances. For example, we can compute the second moment S, of the
position random variable as

Sy =< 22 >= / 2J(w, 1) da (17)

—00

4



which is really just the statement that S,, =< M2, >. Then the tradi-
tional variance of the position becomes 02 = S,,— < x >?. Similarly we can
compute the second moment of the momentum as

Spp =< p* >=< D%, ) >= /OO P (—rﬁa—z) W dx (18)

2
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from which we compute o} = S,,— < p >*.
More generally, any physical quantity y associated to the system that can
be constructed as a polynomial combination y = Q(z, p) has expected value

> 0
<y>=< QLD >= [Tt wan )

1

5-p?, is associated

For example, kinetic energy, which can be expressed as
with the operator —#h%‘g)—;.

Finally, it’s worth noting that an observable always assumes a real value.
As such, for any observable y with corresponding operator Y we have < y >=

<y >, so that
<y>=<Yy,p >=< Y, >=< Y, Y >.

That is, the operator Y must be Hermitian or self-adjoint. You can easily
check that both M and D are self-adjoint.

An Example: The Infinite Square Well

Consider a particle of mass m in an “infinite square well”, say on the
interval I = (0,1). What this means is that the potential function V'(z,t)
is defined to be zero for x € I, and V(x) = oo for x outside of I. The
interpretation of this is that outside I we have a zero chance of finding the
particle (since it would have to have acquired infinite energy to get there),
and so we require ¥ = 0 for x not in I. We'll talk about the boundary
conditions in a moment.

We thus seek a solution to Schrodinger’s equation on the interval (0, 1).
Separate variables as ¥(x,t) = a(t)5(z), plug into equation (5) with V' =0,

and separate to find
O h 63:1?
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for some constant £ > 0 (or else we have no hope of obtaining Dirichlet or
Neumann boundary conditions). The solution for «(t) and S(z) is

alt) = Ce! (20)
B(x) = Cysin(qr) + C3cos(qr) (21)

where C4, Cy, C3 are arbitrary constants and ¢ = \/2mE/h (so E = Z;:z)

Now for the boundary conditions: we'll use ¥(0,¢) = ¥(1,t) = 0 at all
times. You can derive that these are the “correct” boundary conditions by
replacing the condition V' = oo outside I by V = A < oo and examining the
behavior of ¢ at the boundaries as A — oo. I don’t want to do that right
now—it will distract from the main point!

And the main point is this: with zero Dirichlet boundary conditions we
are forced to take C5 = 0 in equation (21), with ¢ = k7 for some integer
k. This means that F = % and any separable solution to Schrodinger’s
equation is of the form

hk2n2

Uiz, t) = e gy (x) (22)

for some integer k, where ¢y (z) = v/2sin(kmz) (the /2 is so that ||dg|2 = 1).
The general solution is given by

- hk2n2

Yla,t) =) cpe’ () (23)

where the ¢, can be determined from the initial condition. In fact, if ¢(z,0) =
f(x) then we take

= / J(2)bu(x) da (24)

The ¢ might be real, but ¢(x,t) will always be complex-valued due to the
iﬁt iﬁt . .
e 2m " factor. Note also that e’ z= " is purely oscillatory and never decays

away (in contrast to say, the heat equation).

Let’s compute the < = >,0,,< p >, and o, for such a particle. We’ll
take initial wave function f(z) = \/75 sin(rz) + § sin(2rz) — 1 sin(47z) (note
| f]? is normalized). This yields wave function

2 ihr? 1 ihm? 1 ihr?
P(x,t) = %e S sin(mx) + 562 " sin(2mzx) — §esgm “sin(4rz).  (25)




The square of the initial wave function amplitude at time ¢ = 0 (with
h =m = 1, for simplicity) looks like

0 02 04 06 08 1
X
At times t = 0.01,0.02,0.03,0.04,0.05 the squared amplitude of the wave

function looks like




The figure on the left below shows that expected value < x > as a function
of time, while the figure on the right shows the standard deviation o, over
time:
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The actual formula for < x > is

1 8V/2 (3h7r2t> 1642 <15h7r2t>
COS S

<z>=- -
TITS T op2 om 22572 “°\ Tom

and isn’t terribly enlightening. The formula for o, is messier. We can also
compute and plot < p > and o, over time, to obtain
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The Uncertainty Principle

It’s easy to see that o2 > 0 always, for 02 =< M2, > — < M, ) >2,
so (using ||¥|| = 1 and M self-adjoint)

oy = <M, > —(< My, Y >)°
> < My, M > —|| My

= 0

where I've used Cauchy-Schwarz in the form < My, ¢ >< |My||||¢] =
|M||. In fact, replace M by ANY self-adjoint operator Y to find 02 > 0.
In particular, the same statement holds for momentum.

But in fact one can make a “joint” statement regarding the magnitude
of o, and 0,. Amazingly, this comes about from the innocuous fact that D
and M do not commute. In fact, you can (and should) check that

DM — MD = hl (26)

where [ is the identity operator. In what follows let us for simplicity just
consider the case in which < x >=< p >= 0, which isn’t too restrictive (we
can always rescale position and velocity linearly so this is true, and it doesn’t
change the variances). In this case we have

2= " 2l P de = | My, (27)

o0

Also

> 0% > Oy O
2 _ _p2 Z 2 dr = K2 —L 22 dx = || Dy|?
o,=—h /_oo Y(z,t) 52 dx =h /_Oo 5% D dx = || Dy || (28)

after an integration by parts. We then have

ho= hlly|?

Al <1, > |

| < (DM — M Dy, > |

= | <DMy,ip > — <MDy, > |
| < M, Dip > — < D, M) > |
2[[M||[|[ Dl

20,0,
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where I used the triangle inequality, Cauchy-Schwarz, and equations (27) and

(28). Thus

h
B < 0,0, (29)

which is the simplest version of the famous Heisenberg Uncertainty Princi-
ple. Note that the same computation works for ANY two observables with
operators that do not commute. And if the operators ¢ and b DO commute,
the computations above will leave us empty handed with the uninteresting
assertion o,05 > 0!

However, not every observable yields uncertain values when measured.
Consider the same particle in a box as above, but with initial configuration
Y(z,0) = v/2sin(27z). It’s straightforward to compute that

<x> = 1/2
9 2m% — 3
oy, = —Q/———
* 2472
<p> = 0
0127 = 471K

Nothing remarkable here—both position and momentum (as random vari-
ables) have non-zero variance (note also that 0,0, = —”2”2_1% ~ 1.67h >
h/2, in accordance with the uncertainly principle. But if we use E to denote
energy, with associated operator — 2 9% e find

2m 922>
212 h?
<kE> =
m
0% = 0.

The energy of this system has NO variance—it will yield the same value each
time!
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