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Predator-Prey ODE System

Recall the classic ODE model for a predator-prey system: Let u1(t) denote
the number of prey of a certain species at time t. Left on their own we’ll
assume the prey would grow according to some logistic law like u′1 = α1u1(1−
u1/m), or even more simply as

u′1(t) = α1u1(t)

where α1 is the growth rate. Let u2(t) denote the number of predators of a
certain species (which of course prey on the u1 species). Without the prey
species the predators would die out, say according to

u′2(t) = −α2u2(t)

for some constant α2 > 0. However, the presence of the prey species boosts
the growth of the predators, and this can be simply modelled as u′2(t) =
−α2u2(t) + β2u1(t)u2(t). This last term models the boost as being jointly
proportional to the number of predators and prey. The presence of the preda-
tors, however, has a detrimental effect on the prey population. This effect
is modelled by adding a term −β1u1(t)u2(t) to the right side of the prey
equation.

All in all the classic predator-prey ODE system is

u′1 = α1u1 − β1u1u2 (1)

u′2 = −α2u2 + β2u1u2 (2)

It’s not hard to draw a phase portrait of this system. It has a single fixed
point in the first quadrant; solutions spiral in closed loops about the fixed
point.
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A Spatially Distributed Model

In the last homework we saw how including spatial variation and bound-
ary conditions can alter the conclusions of a biological model. We can in-
corporate space into the predator-prey ODE model too, and it gives a nice
illustration of a coupled pair of conservation laws.

First, assume that the spatial domain is 0 < x < H for some H. Assume
the prey diffuse with diffusivity κ1 and the predators with diffusivity κ2. Let
u1(x, t) denote the prey density and u2(x, t) the predator density. If neither
predators nor prey were created or destroyed both u1 and u2 would satisfy the
diffusion equation with corresponding diffusivity. However, we can employ
the reasoning that led to the ODE model to arrive at an analogous PDE
model,

∂u1

∂t
− κ1

∂2u1

∂x2
= α1u1 − β1u1u2 (3)

∂u2

∂t
− κ2

∂2u2

∂x2
= −α2u2 + β2u1u2 (4)

with all constants positive. Of course we should also impose appropriate
boundary and initial conditions.

Diffusive Instability

All the conservation laws involving diffusion that we’ve looked at so far
result in solutions which approach steady-state behavior (the travelling wave
is essentially steady-state too). And in fact if the boundary conditions are
insulating on a bounded domain then the steady-state solutions have been
constant in space too. This isn’t too surprising—diffusion smear everything
out to a uniform concentration.

But in a coupled system of diffusive PDE’s this need not always be the
case. In certain cases a coupled system can give rise to diffusion-driven in-
stability, in which the system doesn’t settle down to a steady-state. Consider
the coupled system

∂u1

∂t
− κ1

∂2u1

∂x2
= (k0 + k1u1)u1 − au1u2 (5)

∂u2

∂t
− κ2

∂2u2

∂x2
= bu1u2 − cu2

2. (6)

This is a variation on the predator-prey model, proposed by Segel and Jack-
son in 1972 in the article “Dissipative Structure: An Explanation and and
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Ecological Example,” J. Theor. Biol, 37, 545-559. Here u1 is the density of
prey, u2 the density of predators. In equation (5) the term (k0 +k1u1)u1 gov-
erns the growth of the prey and −au1u2 models the effect of the predators on
prey density. The bu1u2 term models the effect of prey density on predators
and −cu2

2 is a “combat” term governing how predators affect or prey on each

other. If we rescale as x̄ = x/xc, t̄ = t/tc with xc =
√

κ2/k0, tc = 1/k0, and

ū1 = c
k0

u1, ū2 = b
k0

u2 we arrive at the system

∂u1

∂t
− κ

∂2u1

∂x2
= (1 + ku1)u1 − āu1u2 (7)

∂u2

∂t
− ∂2u2

∂x2
= u1u2 − u2

2. (8)

where I dropped all the bars from the dependent and independent variables.

Here ā = a/c, κ =
√

κ1/κ2, k = k1/b.

It turns out (via some tedious but not-so-hard analysis) that this system
will NOT approach a steady-state if k < 1, k < a, and 2

√
κ < (k−κ)/

√
a− k,

but rather solutions will oscillate forever, even with homogeneous Neumann
boundary conditions!

The intuitive explanation is this: The condition 2
√

κ < (k − κ)/
√

a− k
forces κ to be small (play around with it, convince yourself). As a result,
concentrations of prey diffuse rather slowly. Due to random variations in local
density, a small peak develops in the prey u1 density, and the term (1+ku1)u1

spurs further local growth. This spurs the predator growth due to the term
u1u2 in equation (8), and so the āu1u2 term then kicks in to moderate prey
growth. But because the predators diffuse more rapidly than the prey (if
κ << 1 the prey are much less mobile than the predators) any build-up of
predators quickly diffuse and prey growth continues unhindered. Eventually,
however, the predator density will increase (and continue diffusing), but not
before a large peak has developed in u1. The high predator density finally
moderates the prey density peak and the whole thing repeats.

Another interpretation in which this kind of nonlinear coupling is impor-
tant is chemistry. Specifically, we interpret u1 as the concentration of an
activator, that is, a substance which catalyzes its own production, and u2 as
the concentration of an inhibitor whose production is also catalyzed by u1,
but which itself tends to inhibit the production of u1.
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