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Approximating Derivatives; Other Methods

Some simple modifications to our finite difference approximations to the
derivatives in the PDE can produce better (more accurate) results, although
such modifications may change the stability requirements on the stepsizes.

As an example, consider again the advection equation u; + cu, = 0 for
x > 0, t > 0, with initial condition u(x,0) = f(z), boundary condition
u(0,t) = ¢g(t). As before we use stepsizes h, and h¢, set u;; = u(ihy, jhy),
and approximate u; with the difference quotient ===
But we can use a better approximation for u,, namely

u(+ hy,t) —u(z — hy,t)

Uz (x,t) &~ T ) (1)

This is called a centered difference approximation, as opposed to the one-
sided approximation we used before. It’s more accurate for small h,, for you
can use Taylor’s Theorem to see that

1

w(x — hg,t) ~ u(z,t) — hyug(z,t) + ihium(:v,t) + O(h2)
1

u(z + he,t) =~ u(x,t)+ hyu,(z,t) + §hium(a:, t) + O(h2).

Inserting the above expressions into the centered difference formula (1) shows
that
u(x + hy,t) —u(x — hy, t)
2h,

Thus the centered difference formula is said to be second order accurate in
space, since the error term is order h2.

Contrast this to the previous one-sided difference, in which you can easily
show that

= ug(z,t) + O(h2).

u(z,t) —u(z — hy,t)
ha

which is first order accuracy in x.

= u(x,t) + O(hy)



Exercise

1. Show the one-sided difference is first order accurate in z.

Replacing the u, term in the PDE with the centered difference approximation
and the u; term with the one-sided approximation yields the scheme

Uil = Uij + ;Zt(um,j — Ui1;)- (2)
x
Because the centered difference is a better approximation to the second
derivative (in ), we might expect this to provide better results.
There’s only one problem: This method is UNSTABLE for any choice of
h: and h,! I won’t prove that here, but you might be amused to write it
out in a matrix form and see that the relevant matrix always has eigenvalues
larger than 1, no matter how small h; is.

The Lax Method

One way to fix up equation (2) to preserve second order spatial accuracy
and get stability is to replace the w; ; term in the TIME derivative approxi-
mation with the average %(uiﬂ,j — u;_1,;), SO we approximate

1 1

o Wig+1 — 5Uit1,5 — 5

u471’.
u(zi, tj) ~ . g
¢

Inserting this into the PDE u; + cu, = 0 yields

1 ch 1 chy
Ui jy1 = (2 - 2%) Uit1,j + (2 + 2hx> Ui—1,5- (3)

This scheme turns out to be second order accurate in space (first order in
time) and is STABLE for ch;/h, < 1, just like the first method we looked at.

There are many other methods for advection-like equations (the leapfrog
method, the Lax-Wendroff method, etc.) but the stable ones I've shown you
here are sufficient for our modelling purposes. For more information, check
out Richtmeyer and Morton, Difference Methods for Initial Value Problems
(Wiley, 1967) or W.F. Ames, Numerical Methods for Partial Differential
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FEquations, Academic Press, 1977. The Numerical Recipes Books (Cambridge
Univ. Press) also has a quick treatment of PDE methods.

Methods for Diffusion

Consider the heat equation u; — ku,, = 0 where k is some constant. With
notation w(x;,t;) = u;; as above, let’s approximate the derivatives as
Uijp1 — Uij Uig1j — 2Uij + Ui
ui(w;, ) ~ s U (Tiy 1) R % -
X

hy

Inserting these into the heat equation and solving for w; ;41 gives the FTCS
(forward time, centered difference) scheme

khy 2khy khy
Ui j+1 = ﬁuifl,j 1- 2 Uij ﬁuz‘ﬂ,ja (4)

and explicit time-marching scheme.

It turns out that the method is stable provided Z]Ijé” < 1, not entirely
surprising given the pattern of earlier methods (but not obviously true ei-
ther!) One drawback to this method is that if we decrease h, to get better
spatial resolution of the solution, we must decrease h; by a factor of FOUR to
preserve stability. Thus if h, is very small we end up taking a huge number
of tiny time steps, which may be wasteful. Still, this method will suffice for
our purposes.

Again, see the references above for other methods for diffusion type prob-
lems. In particular, there are so-called implicit methods in which we must
solve a system of linear equations to find the solution at iteration j + 1 (we
solve for all u; j1 simultaneously). These implicit methods are often stable
for large time steps, and so this may offset the extra work of solving the
linear system at each iteration.

A Note on Boundary and Initial Conditions

We implement boundary conditions like u(0,¢) = g¢(t) by simply up; =
g(t;), as we've been doing. However, there are other types of boundary
conditions, e.g., Neumann conditions. These too are easy to implement.
For example, if we require u,(0,t) = g(t) we could approximate u,(0,t) ~
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(uhg,t) —u(0,t))/hy. At t = t; this becomes u,(0,t;) = (u1,; — uo;)/ha-
The Neumann boundary condition at ¢ = ¢;,; would then be implement as

Ul j+1 — U0, j+1

I = g(tjr1)

or
Ug g1 = Urjy1 — haeg(tjpn). (5)

At iteration j + 1 we’d use the PDE method to compute u; ;41 from quanti-
ties at time ¢;, then compute g ;41 using equation (5).

Problems

1. Devise and implement a numerical method for solving the wave equa-
tion uy — Uz = 0 (wave speed is 1 here) for 0 < z < 1, t > 0, with
initial conditions u(z,0) = f(z), us(x,0) = g(z), and boundary condi-
tions u(0,t) = ho(t), u(1,t) = hy(t). Hint: Estimate u; ;41 using the
value of u at iteration 5 AND iteration j —1. Also, computing u; o from
f is easy; compute u; ; using the wu; initial condition.

Use your scheme to compute the solution to the wave equation with
f(z) = sin(nrz), g(x) = 0, ho(t) = hi(t) = 0. This models the motion
of a string of length one deformed to initial position sin(7wz) with zero
initial velocity and ends tied to height zero at both ends at all times.
Use h, = 0.05. Does the result seem reasonable? What time step is
needed for stability?



