Numerical Solutions to PDE’s
Mathematical Modelling Week 5
Kurt Bryan

Introduction

Let’s start by recalling a simple numerical scheme for solving ODE’s.
Suppose we have an ODE u/(t) = f(¢,u(t)) for some unknown function wu(t)
(f is specified), with initial condition u(0) = ug. Choose some small number
hy, the so-called stepsize, and use it to approximate u'(t) as

t+ hy) — u(t)
hy

u'(t) & u(

a finite-difference approximation to the derivative of u. The smaller h; is,
the better the approximation.

Now define ¢; = ih; and also u(t;) = u;. Take the original DE and replace
t with t;, u(t;) with w;, and the derivative u/(t;) with the appropriate finite
difference approximation to obtain

Uiyl — Uy

~ tia i).

This can be re-arranged into
Uity A Ui + e f (s, ug). (1)

Equation (1) gives us a recipe for approximating u(t). We start off knowing
up = u(0). We can use (1) to approximate u; = u(h). With an estimate of
up, we can then approximate uy, and then uz and so on. This is just good
old Euler’s method.

There are much more sophisticated ways to solve ODE’s, but philosoph-
ically they all work in pretty much the same way: Knowing the value of u;
(and maybe early values), we attempt to extrapolate the solution into the
future by making use of the DE. The same idea works for PDE’s.

Finite Differencing for PDE’s

Consider the advection equation

ou ou

for some function u(x,t) on the half-line x > 0 with boundary and initial
conditions

u(z,0) = f(x), (3)
U(O,t) - g(t)7 (4>

for some functions f(z) and g(¢). The number ¢ is the wave speed and is
a positive constant. Although u can be found explicitly, we are going to
consider a numerical method for approximating u. For a more complicated
equation in which ¢ is no longer constant, or even depends on u, a numerical
solution will be the only option.

Let’s suppose that we're interested in the solution on the interval 0 < x < 1.
We will replace the partial derivatives of u by finite-difference approxima-
tions. Choose n + 1 equally spaced points g, x1, ..., x, in the interval [0, 1]
of the form z; = i/n. Let h, = 1/n denote the spacing between the points.
Let’s also divide time ¢ up into increments h; by setting t; = h,j where h,
is some “small” number. The partial derivatives for u can then be approxi-
mated as

du w(@, tiy) — (i, t;)
or 11019) h |
ou u(zi, ty) — u(wioa, i)
oo ta) ~ e |

As h, and h; get smaller the approximations typically get better—they're
o(hy) and o(hy), at least if u is differentiable enough. Let’s use the notation
w;; to mean u(x;, ;). In this case we have

ou Wi jp1 — Uij
) A bt ij
o 1) he
T b)) ~ L T Uinlg
8x<x’) hy

Take these expressions and substitute them into the advection equation (and
replace “~” with “=") to obtain
Yijrd = ij , Uij = Uizl

=0.
" Iy

Notice how this finite-difference equation mirrors the original differential
equation. We can solve for u; j1 as

h h
Uij+1 = (1 — Cht> (2%} + ch—tui,u. (5)

Equation (5) is the basis of a reasonable numerical method for computing
the solution to the original differential equation. Repeated application of (5)
let’s us estimate the solution u(z,t) at any later time. For example, we know
u(z,0) = f(z), where f is a given function, so that u;o = f(z;) is known for
all ¢ from 0 to n. We can estimate u(z;,t1) ~ u;; for 1 < i < n by using
(5) with j = 0; all terms on the right side are known. We compute v from
the boundary condition, as ug; = g(ht). Once the numbers u;; are known
we apply equation (5) with j = 1 to compute u; 2, and then u, 3, etc., while
using the boundary condition to compute ug j+1. Such a method for solving
a PDE is called an explicit time-marching method—repeated application of
(5) marches the solution forward in time.

Here’s a graphical way to look at what we’re doing.

t

j+1

This figure is called the stencil for the numerical method, and it pictori-
ally illustrates what equation (5) is doing—estimating u(x;,t;41) in terms of
u(z;, t;) and u(z;_1,t;).

Exercises:

1. Explain why the scheme in equation (5) is exact (for the advection
equation) if we choose h; and h, so that CZ—; =1.

2. Take ¢ =2, f(z) =0, and g(t) = 5 sin(5¢). Use h, = 0.1 and h, = 0.04
in the scheme (5) and solve out to ¢t = 1 for 0 < < 1. You may find
the Maple notebook on the class web site useful, or you can write your
own code—it’s easy!

Plot the solution for several times from t = 0 to ¢ = 1. Change h; to 0.1
and repeated the process, solving out to time ¢ = 1.0. What happens?

3. Suppose that instead of Dirichlet boundary conditions at x = 0 we have

a Neumann condition 5
U
—(0,t) = g(t).
“2(0,8) = o)

How should this be implemented numerically?

Stability

Problem 2 illustrates that there’s something more to know about imple-
menting equation (5); in certain circumstances the method may will numer-
ically unstable.

One way to understand the problem is via linear algebra. Let u/ denote
the column vector [ug, uy, . . ., u,]? (where T is transpose). Then the iteration
in j embodied by equation (5) can be cast as

vt = A +g;

where . i
0 0 0 0 --- 0
a 1—«o 0 o --- 0
A=10 « 1—a 0 0

O 0 o 0« 1—a

with o = Ch—};t and g/ = [g(jh),0,---,0]T.
For simplicity let’s assume we have zero boundary data, so g/ = 0 for all

7. Then we have simply
w = Alu’.

We expect the process will be unstable (and in particular, errors will be
magnified without bound) if A7 grows large in some sense.

One desirable feature is that A should have all eigenvalues of absolute
value less than or equal to one. The reason for this is that the eigenvalues
of AJ are of the form M where \ is an eigenvalue of A. If [A\] > 1 then
the corresponding eigenvalue of A7 is large, and so errors which are not
orthogonal to the eigenvector are multiplied.

It’s easy to check that the eigenvalues of A are 0 (a simple eigenvalue
if @« # 1) and 1 — o (multiplicity n). Thus we definitely want |1 — «| < 1,
leading to0 < a < 2,0r 0 < ch—}: < 2. This is certainly a condition we should
enforce on h; and h,.

But actually, that’s not quite good enough. Suppose that e’ is the error
in the jth stage of the computation. It would be preferable if Ae’ was no
larger than e, and this isn’t quite the same as requiring the eigenvalues less
than one.

Let ||v]| denote the Pythagorean length of the vector v. Then we want

|Ae’]| < |||, or lAel < 1 Since we don’t know what e/ is, we simple

[
require that
[Av]]

<1
vl

for all vectors v.

Now it’s a fact from linear algebra (easy to prove) that the maximum

value of Hﬁ’;“"” over all possible vectors v is exactly the largest eigenvalue of

the matrix AAT. In the present case it’s easy to compute that

0 0 0 0 0
0 1—2a+2a? a — a? 0 0
AAT =10 a— o? 1—2a+20® a—a? 0
a— a? : a—a?
0 0 0 a — o 1—204—1—2042_

The characteristic polynomial p(A) of this matrix is just A times the charac-
teristic polynomial of

1 —2a + 2a? a — o? 0 0
a — o? 1—2a+2a® a—a? - 0
A= 2 : 2
a— : a—
0 0 a—a® 1—2a+2a?

(just think about expanding the determinant of A — AI along the top row).
The matrix A; is n by n and can be written as A; =T — (o — a*)M where

2 -1 0 0
-1 2 -1 0
M =)
-1 —1
0 0o -1 2

Thus the eigenvalues of A; are of the form 1 — (o — a@?)\ where) is an
eigenvalue of M. To see this suppose that Mv = Av (v is an eigenvector of
M). Then Ajv=(I1—-(a—a*)M)v=(1-(a—a?)A\)v,ie, 1 —(a—a?)\
is an eigenvalue for A;.

And fortunately, the eigenvalues of M are known in closed form! The
matrix M comes up a lot in finite difference methods. The eigenvalues of
the n by n matrix M are given by 2(1 — cos(kn/(n + 1))) for £ = 1 to
k = n. Thus the eigenvalues of the matrix A are 0 and the m numbers
1—(a—a?)(1—cos(kr/(n+1))).

If we require that all of these eigenvalues have magnitude less than or
equal to one we have

—1<1—(a—a?)(1—cos(kr/(n+1))) < 1.

This is easily rearranged to

T <o

0 < (a—a?)(1 — cos(1
n

Now since —1 < cos < 1, the above inequality will be satisfied if 0 < 2(«a —
a?) < 2, leading immediately to 0 < a < 1 or

c— <1 (6)
(since all quantities are positive, we needn’t worry about the left inequality).
Equation (6) is called the Courant-Friedrich-Lewy condition, or CFL condi-
tion for short. It’s necessary (and sufficient) for the numerical scheme (for
the advection equation with ¢ > 0) to be stable.

The typical way the CFL condition is employed is as follows: We want to
solve the advection equation with a certain spatial resolution, out to some
time ¢t = T. We thus choose h, first. We then choose h; in accordance to

6

equation (6), and then march out in time to ¢ = T in steps of size h;. The
finer the spatial resolution required (smaller h,) the smaller the time steps
must be, with correspondingly greater computational burden.

If other “advection” like problems (such as in problem 4 below) there
might not be a clear-cut choice for h;. If, for example, ¢ is variable, we might
pick the smallest value for h; dictated by the CFL condition (6).

4. Repeat problem 2 where ¢ now depends on position, say c(z) = 2 +
tanh(10(x — 0.5)). Use h, = 0.1. How small should you choose h;?
Show a graph of the solution at t = 1 with your choice for h;.

5. Repeat problem 2 for the non-linear traffic low equation
ou 2u\ Ou
h,(1-22) =0,

ot " (um> Bz

where u(x,t) is the traffic density at time ¢ and position x, v,, is the
maximum traffic velocity, and u,, is the maximum traffic density. For
simplicity take v, = u,, = 1. You'll need to work out the appropriate
time marching scheme analogous to equation (5). Use g(¢) = 0.2 and
f(z) =02 for z < 1/2, f(z) = 0 for x > 1/2. Take h, = 0.1 and

try to find an appropriate choice for h;—does the CFL condition help
estimate a good choice?

What is the physical interpretation of the initial conditions? What

happens? Does it make sense?

6. Repeat the last problem but with g(¢) = 0.8 and f(z) = 0.8 for z < 1/2,
f(x) =0 for x > 1/2. Can you make it work in any sensible way?

7. Repeat the last problem but with boundary condition g(¢) = 0 and
initial condition f(z) = 0.5(1 4 tanh(10(z — 0.5))). What happens?

