Morphogenesis
How the Leopard Got Its Spots
Mathematical Modeling Week 8
Kurt Bryan

Morphogenesis is the study of how spatial patterns and forms develop in
organisms, especially embryos. In a developing embryo, how do some cells
“know” that they should become brain tissue, other cells “know” they should
become kidneys, or heart muscle, whatever. How can they do that? It’s just
a bunch of dumb chemicals!

Let’s consider a very specific example, namely how certain animals de-
velop highly regular coloring patterns in their coats—leopards have very reg-
ular spots, tigers have nice evenly-spaced stripes, etc. The general theory is
that individual skin cells are influenced to produce different color hair or fur
in response to the local concentration of one or more morphogens, that is,
chemicals that influence morphogenesis. The tiger gets stripes of different
colors because the concentration of a certain morphogen in its developing
skin varies in a regular spatial pattern.

But of course this only defers the question. How does the pattern develop
in the first place? In 1952 mathematician Alan Turing (the same Turing of
“Turing Machine” and the “Turing Test” fame) wrote a landmark paper in
which he proposed a mechanism by which “dumb” chemicals could arrange
themselves into regular spatial patterns. It’s closely related to the idea of
diffusion-driven instability in coupled diffusion equations.

Consider two chemical species, A and B, with concentrations u(z,t) and
v(z,t), respectively. Chemical A is an activator, in that it auto-catalyzes its
own production. Chemical B is the inhibitor, in that it inhibits the produc-
tion of A. Both chemicals diffuse passively in the region 0 < x < H, with
diffusivity k1 for A, ko for B. The general form of the coupled system is
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for some functions f and g that embody how A and B interact. These func-
tions depend on the specific reactions being modelled.



One such model of an activator-inhibitor pair is given by (after re-scaling)
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where we've taken diffusivity one for chemical A. Here b is some constant.
The u?/v term in equation (1) is the auto-catalytic term for the production
of u, while larger values of v tend to inhibit the creation of A. The —bu term
might account for some natural decay in the concentration of A. In equation
(2) we see that B tends to inhibit its own growth as well (via the —v term),
but A tends to promote the production of B via the u? term.

It turns out that the solutions to this system with Neumann boundary
conditions can, with the right choice of k and b, approach a steady-state in
which v and v are NOT spatially constant, but rather vary regularly. This is
actually quite surprising, since diffusion typically results in flat, featureless
steady-state solutions.

Here’s a brief account of why such things can occur. The system (1)-
(2) with zero Neumann boundary conditions has constant solution u(z,t) =
1/b,v(x,t) = 1/b% in fact, this is the only non-trivial constant solution. Now
as we've seen, diffusive equations typically approach some kind of steady-
state, and it wouldn’t be at all surprising if the solutions here approach
these constant solutions. And in fact, this usually happens, but for certain
choices of k and b it doesn’t.

Here’s why: first, linearize the system (1)-(2) around the solution u =
1/b,v = 1/b%. Specifically, suppose v = 1/b + u,v = 1/b*> + v for some
functions u and v which we assume are “small”. Note u# and v measure
deviation from the steady-state solution. Insert v = 1/b+ w,u = 1/0* + v
into the system (1)-(2) and drop quadratic (really small) terms. What you
come up with is the coupled linear system
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Now you may recall (also from DE 2) that any function h(x) defined on
some interval 0 < x < H can be decomposed into a sum of sine and /or cosines
of appropriate frequencies. In particular, such a function can be written as
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where the ¢ are constants given by

Cp = H/ )cos(krz/H) dx

for k > 1 (and ¢o = & Jh(z) cos(kma/H) dz). This is called the Fourier
Series for h(z). In what follows below I'll write Fourier Series as h(z) =
> Cw cos(wx) where w = kr/H for k =0,1,2,....

In the present case, we're going to contemplate the possibility of decom-
posing @ and v into a Fourier Series with respect to x. However, since v and
v depend on t, the coefficients ¢, will themselves depend on t. We will write
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where w = k7 /H for integers k > 0. The ¢,(t) and 1, (t) are the coefficients
in the Fourier-cosine expansion of # and v at time ¢t. Note also that u and v
as defined satisfy zero Neumann condition at + = 0 and x = H. If you plug
these guesses at u and v into the linearized system (3)-(4) you obtain (after
cancelling off the cosines) a linear system of ODE equations for ¢, and v,
of the form
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This is really an infinite collection of linear systems of ODE’s, one for each
frequency w.

The solutions to the system will consist of exponential functions, e.g.,
ou(t) = creMt + coe??! where A\ and A\, are the eigenvalues of the matrix

b — w? —b?

M= 2/b —(1+ Kw?)



defined by the right side of equations (5)-(6) and ¢; and ¢y are constants.
The function ¥, (t) will have a similar form.

If either eigenvalue A\; or A is positive for some particular w then that
portion et cos(wx) of the solution in the linearized equations will grow ex-
ponentially. This means that the equilibrium solution v = 1/b,v = 1/b?
to the original nonlinear system (1)-(2) is unstable. More precisely, those
Fourier frequencies for which the eigenvalues are positive are unstable near
the equilibrium, and so those frequencies w are “pushed away” from the
equilibrium.

And in fact, we find that for certain ranges of w, b, and k at least one of
the eigenvalues is positive. For example, with b = 0.9 and x = 15 we find
that one of the eigenvalues is positive for w € (0.28,0.87). In particular, if
w = 0.51 then one eigenvalue is about 0.29. As a result, that portion of the
solution u or ¥ to the linearized equations (3)-(4) that looks like a multiple
of cos(0.51z) grows in time, and the corresponding portion of the solution to
the nonlinear equations will tend to move away from the equilibrium.

Here is an example using b = 0.5 and x = 16.56 (these produce instability)
on a domain 0 < z < 44. First, below is a plot of the largest (most positive)
eigenvalue of the matrix M as a function of w.
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The eigenvalues are positive for w € (0.3,0.6). Any corresponding terms
cos(wx) in the solution will tend to be amplified away from the equilibrium
solution, and so the equilibrium solution should contain strong frequencies
in this range.. The range 0.3 < w < 0.6 corresponds to wavelengths of about



27/0.6 to 27/0.3, i.e., 10.5 to 21, roughly.

Here’s the actual solution for certain initial conditions. The equilibrium
solution is u(z,t) = 2,v(x,t) = 4. The initial condition for inhibitor is
v(x,0) = 4 (equilibrium value) and for the activator we have u(z,0) =
2 + 0.5e~(@202/10 5 gmall perturbation off of equilibrium. A plot of the
initial conditions looks like
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But at time ¢ = 30 the solution has settled down (almost!) to the solution
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a regular pattern of alternating high and low concentrations of the mor-
phogens.

For more information on this stuff, look at J.D. Murray’s book Mathe-
matical Biology, Springer-Verlag, 1989.



