
Models Using the Continuity Equation
Mathematical Modeling Week 9

Kurt Bryan

Continuity Equation Recap

If ρ(x, t) is the density of some “stuff” in two dimensions (with x =
(x1, x2)) and q(x, t) =< q1(x, t), q2(x, t) > is the flux of that stuff over some
two dimensional region then we have seen that conservation of stuff implies
the continuity equation

∂ρ

∂t
+∇ · q = 0 (1)

where ∇ · q = ∂q1

∂x1
+ ∂q2

∂x2
. More generally, if stuff isn’t conserved, but is

produced or destroyed at a rate k(x, t) (dimensions stuff per unit time per
unit area) then the equation is

∂ρ

∂t
+∇ · q = k. (2)

In the special case of steady-state flow we have

∇ · q = k. (3)

In this case ∇ ·q equals the rate of creation (or destruction) of the material.

Constitutive Relations

As in one dimension, we can’t solve for ρ or q without at least one more
equation relating these two unknowns. The following problems are designed
to make you think about an appropriate second equation—a constitutive
relation—in various physical situations.

Here are a couple of pieces of terminology you should know: A physical
object or material is said to be homogeneous if its physical properties don’t
depend on position; one part of the material is the same as any other part, so
it’s uniform. If a material is not homogeneous then it is said to be nonhomo-
geneous. An object or material is said to be isotropic if its physical properties
at any point don’t depend on the orientation of the object; the properties
are “direction independent.” Otherwise, the material is anisotropic. For
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example, to good approximation most metals are isotropic electrical conduc-
tors; the electrical properties at any point in the metal— say, the resistance
to electrical current—are independent of the direction in which the current
flows. On the other hand many types of crystals conduct better in some
directions than others, so they’re electrically anisotropic. Muscle tissue is
also an anisotropic conductor—it carries current much more easily in the
direction of the muscle fiber than across the fibers. Whether a material is
modeled as homogeneous or isotropic can also depend on the scale at which
the modeling is done. Some things which look homogeneous or isotropic on
a large scale are quite inhomogeneous or anisotropic at a smaller scale.

Exercises:

1. (Incompressible Flow) Suppose that some fluid—say water—flows over
the two dimensional plane. We’ll measure water by mass, so ρ has units
of mass per area and q has units of mass per length per time. No water
is created or destroyed, so k = 0 in the continuity equation. Water is
essentially incompressible too, so ρt ≡ 0. What can you can conclude
about q? This result of course applies to the flow of any incompressible
fluid.

Based on your answer, could q(x1, x2, t) =< x1, x2 > represent the flow
of water over the plane? Plot this vector field to confirm your answer.
Note this vector field doesn’t depend on time (but there’s no reason it
couldn’t in general).

Repeat for the vector fields q(x1, x2, t) =< tx2,−tx1 > and q(x1, x2, t) =<
c1, c2 > (c1 and c2 some constants).

2. (Advection) Suppose that ρ(x, t) represents the concentration (say mass
per area) of pollutant dissolved in water flowing over the two-dimensional
plane. The water flows around, carrying the pollutant with it. We’ll
suppose the pollutant doesn’t diffuse.

Let v(x1, x2, t) denote the velocity field of the water as it flows around.
From question (1) we know that ∇ · v = 0 at all points and times.

(a) If q(x1, x2, t) is the flow-rate for the pollutant, how are q,v, and
ρ related? Hint: You can figure it out on dimensional grounds, or
actually think it through. In the latter case, consider a very short
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line segment L oriented perpendicular to v, and assume v and ρ
are essentially constant near the segment. How fast is pollutant
crossing L on a “stuff per time per length” basis?

(b) Use the continuity equation and the constitutive relation giving
q in terms of v and ρ to write out the equation satisfied by ρ (it
involves v too). The equation simplifies quite a bit if you use the
fact that ∇ · v = 0.

(c) Consider the simple case in which v =< c1, c2 > for constants
c1 and c2. Write out the equation satisfied by ρ(x1, x2, t). If the
initial condition is ρ(x1, x2, 0) = φ(x1, x2), write out the solution
ρ(x1, x2, t) explicitly in terms of φ, c1, and c2.

(d) Suppose that v =< v1, v2 > depends on x1, x2, and t. A charac-
teristic curve (x1(t), x2(t)) for the vector field v is a solution to
the coupled DE’s

x′1(t) = v1(x1(t), x2(t), t)

x′2(t) = v2(x1(t), x2(t), t)

Show that ρ is constant on such a characteristic. Hint: look at
d
dt

(ρ(x1(t), x2(t), t)) on the characteristic.

Use this to find ρ(x1, x2, t) explicitly in the case in which
v(x1, x2, t) =< x2,−x1 > with initial condition ρ(x1, x2, 0) =
φ(x1, x2).

3. (Heat and Diffusion)

(a) Suppose that ρ(x, t) represents the thermal energy density (pro-
portional to temperature, so you can assume it’s just tempera-
ture) in some object, and that this energy is conserved as it dif-
fuses through the object. What would q represent? What are
its dimensions? Most importantly, if the object is homogeneous
and isotropic, what is a reasonable constitutive relation between
ρ and q? Hint: heat flows in the steepest temperature decrease,
in proportion to the rate of temperature decrease. The constant
of proportionality is the diffusivity. What units should diffusivity
have here?
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(b) Use the continuity equation and constitutive relation from above
to show that ρ should satisfy

∂ρ

∂t
− κ

(
∂2ρ

∂x2
1

+
∂2ρ

∂x2
2

)
= 0.

(c) Suppose the heat flows in some region D. The region starts off
with some initial temperature φ(x1, x2). What’t the corresponding
initial condition for ρ? Suppose that at the boundary D no heat
can exit or enter. Explain why this forces q ·n = 0, where n is the
outward unit normal vector on the boundary. Translate q · n = 0
into an equation involving u.
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