Nonlinear Least Squares Optimization
MA 348
Kurt Bryan

Least-Squares

We've already considered objective functions of the special form
F) =5 >) (1)

where x € R" and the f; are linear. Now we’ll let the f; be general nonlinear (but differen-
tiable) functions. Such optimization problems usually occur in data fitting problems, for ex-
ample, fitting ¢(z) = a+bxr+e“ to (x,y) data points (1.0, 2.2), (1.6,2.8), (2.3,3.9), (3.4,4.4),
and (4.1,5.2), by adjusting a, b, and ¢ to minimize the squared error

f(a,b,c) = ;((¢(1.0)—2.2)2+(q5(1.6)—2.8)2+(¢>(2.3)—3.9)2+(q5(3.4—4.4)2+(¢(4.1)—5.2)2).

As in the linear case, it wouldn’t be crazy to attack this optimization problem with any
general nonlinear algorithm, e.g., conjugate gradients or quasi-Newton methods. But the
objective function (1) has a rather special structure and it turns out you can exploit this to
get (usually) better results with less hassle.

Modified Newton’s Method

Suppose we attack the problem of minimizing f(x) in equation (1) with Newton’s Method.
At each iteration we’ll need the gradient of f, which you can easily calculate is given by

Vf(x)= Z [ix)V fi(x). (2)
i=1
We also need the Hessian matrix, which you can check is given by
H(x) = > (Vi(x)V[fi (x) + fi(x)H;(x)) (3)

=1

where H; is of course the Hessian matrix of f;. BE CAREFUL: The term V f;(x)V fI(x) in
equation (3) above is NOT the dot product of V f; with itself (a scalar), but rather is an n
by n matrix (the so-called outer product of a vector with itself).

Equations (2) and (3) can be written in an alternate form. Let J denote the matrix

whose (i, j) entry is %f; and let f = [fy,..., fis]7. Then we can write
Vix) = J'f (4)
H(x) = J' I+ fi(x)H;(x)). (5)
i=1

Exercise 1
e Verify equations (2)-(5).

Armed with equations (2) and (3) we can minimize f using Newton’s method or some
variation. This is what we’ll do, but with a small modification: we're going to replace the
Hessian with an approximation

H(x) =J7J (6)
by DROPPING the terms f;(x)H;(x). The reasons are

1. If the model we're trying to fit to the data is good then the f; should be fairly small
near the minimum, so dropping these terms shouldn’t change H too much. In fact if
the f; are zero then we don’t change H at all (at the minimum).

2. The resulting matrix H is symmetric positive semi-definite, and “probably” positive
definite, so the resulting algorithm is will likely be a descent method.

3. We don’t have to compute second derivatives!
Exercise 2

e Verify that H is positive semi-definite. Under what circumstances would v’ Hv = 0?

A very simple algorithm for minimizing f as defined by equation (1) would be
1. Make initial guess xq; set & = 0.

2. Solve 3
Hh; = -V f(x), (7)

for hy,, where H is defined by equation (6), and —V f(x;) can be computed from (2).

3. Set xj41 = xi + hy (like in straight Newton’s method) or maybe do a line search from
X in the direction h; and let x;,; be the minimum found by the line search.

4. Test for convergence. Increment k£ and return to step 2.

The general hope is that since hy is likely to be a descent direction, the algorithm makes
downhill progress. As we near a minimum (and if the function value here is close to zero)
the H ~ H and the algorithm converges with the full speed of Newton’s Method.

In general one does not do a line search in the algorithm above, but rather takes h; “as
is.” That’s how we’ll proceed in the rest of the handout. It may turn out that hy is not a
good step (if, say, f(xr +hy) > f(xx)). We'll deal with this in a moment.

Example 1: Let n = 2 and m = 3, with fi(x) = 10(zy — 7%), fa(x) = 1 — 21, f3(x) =

x1 +sin(xg). I used the modified Cholesky algorithm to solve Hh), = -V (xx) at each iter-
ation, with § = 0.01 (if any pivot element in the routine is less than ¢ then it gets replaced
by §). I took x;11 = x; + hy (no line search—just take hy as the step). The starting point
was (—1,—1) (function value 203.7). The results were (stopping tolerance 1072 on successive
iterates)

iteration | point function value
0 (-1,-1) 203.7

1 (0. 926 -2.85) | 686.9

2 (-0.428,-1.67) | 173.4

3 (1.028, -1.063) | 224.7

4 (0.549, 0.070) | 2.97

) (0.304, 0.029) | 0.498

6 (0.322, 0.099) | 0.319

7 (0.318, 0.097) | 0.319

8 (0.319, 0.098) | 0.319

Note that the method was NOT a descent method; the steps from 0 to 1, and from 2 to 3,
both increased the objective function.

Exercise 3

e Use this method to solve the nonlinear least-squares problem at the start of this hand-
out (so m =5, n=3).

Variations and Improvements

The matrix H may, under some circumstances, become singular or nearly singular. In
fact, if m < n this is guaranteed! In this case hy is not a descent direction, and moreover,
h;, may become very large.

Exercise 4

o If f; is a function of n variables, show that the n by n matrix V£,V fI is rank one (if
Vfi # 0), and so has a nullspace of dimension n — 1.

e Show that for m < n the n by n matrix 37, Vf;V I is at most of rank m, and hence
NOT invertible. Hint: Use the fact that if V' and W are subspaces of R" of dimensions
r and s, respectively, then V N W is at least of dimension max (0,7 + s — n).

It would be nice to safeguard against the possibility that H is singular, and to somehow exert
more control over hy, to ensure that the algorithm makes downhill progress. One method is
to replace equation (7) by)

(H+ plhy = =V f(xy) (8)

3

where p is some positive number. The matrix H + xI is symmetric and positive definite
(hence invertible) if u > 0, so the resulting hy will be a descent direction. If y is very large
then hy is essentially a multiple of —V f, the direction of steepest descent.

One drawback to this procedure is that if we fix g > 0 then H 4 uI will never equal the
true Hessian, even if all f; equal zero, and so the quadratic convergence rate of Newton’s
method will be lost. One strategy is to update the value of u at each iteration, increasing
if the algorithm isn’t make good progress (forcing steepest descent steps) and decreasing
toward zero if things are going well (so the method is more like straight Newton).

We can quantify how well the algorithm is making progress by computing the ratio

f(Xk) - f(Xk+1)~ (9)

where h;, = X311 — x;. The numerator is the decrease in function value from one itera-
tion to the next; the denominator is the decrease predicted by the local quadratic model
f(xis1) ~ f(xx) + Vf(xx)Thy, + ShiHhy. If this ratio is close to one then this indicates
that the local quadratic model is good, and we should decrease p (so Newton’s method can
run unfettered). If p << 1 we should increase pu, thus forcing the method to take steepest
descent-like steps. There’s lots of room for experimentation, but I'll use the rule that if
p > 0.9 then p should be cut by a factor of 10. If p < 0.1 then p should be increased
by a factor of 10. Otherwise, leave p alone. Also, if f(x; + hy) < f(xx) (so progress
was made) then accept the step hy and increment k; otherwise, reject the step, increase p,
and try again. Note that for a sufficiently small value of we must obtain f(x;+hg) < f(xg).

p:

Example 2: Same setting as the previous example (but with 6 = 0 in the Cholesky decom-
position routine) and initial value = 1.0. The algorithm converges in 7 iterations. The
first few look like

iteration | point function value
0 (-1,-1) 203.7

1 (-0. 01 -0.976) | 48.5

2 (0.434,-0.02) | 2.40

3 (0.304, 0.072) | 0.334

4 (0.322,0.10) 0.319

) (0.318,0.097) | 0.319

6 (0.319,0.098) | 0.319

7 (0.319,0.098) | 0.319

Note that the objective function now decreases monotonically.
More Improvements

There is (at least) one other significant improvement that can be made. At each iteration
we have to solve (H + puI)h, = —V f(x;), that is,

(37T + pDhy, = —Vf(xs). (10)

4

When p = 0 this is J¥Jh;, = —V f(xy), which, given that Vf = J'f, you might recognize
as the normal equations for the linear least-squares problem of minimizing ||Jhy + f[|2. In
this case we’ve seen that QR decomposition is the numerically preferred method, so if =0
that’s what we should do. In fact, even if g > 0 equation (10) is still the normal equation
for a least squares problem, namely that of finding the least squares solution to the linear

system
e[

where the 0 on the right is an m — n by n matrix of zeros. Thus QR decomposition remains
the method of choice.

Exercise 5
e Verify equation (11).

The Trust Region Approach

If 4 = 0 in equation (10) or (11) then hy is the full unconstrained Newton step, while
if p is very large then hy ~ —V f(z)/p and the algorithm becomes something like steepest
descent. We increase or decrease y according to how well the algorithm is proceeding.

There’s a slightly different point of view on this process for controlling the step hy,
called the “trust region” approach. Consider the problem of solving for the stepsize hy
by minimizing ||Jhy, + f]|* (this is the g = 0 case of (10) or (11)) but with the additional
constraint that the step h; must not exceed a certain magnitude A, that is,

[hy || < A (12)

I claim that for any fixed A > 0 there is some unique p such that the problem of minimizing
|Jhy, + £||? subject to the constraint (12) is equivalent to solving equation (10).

To prove this, let A > 0 be given and consider minimizing ||Jhy + f]|? subject to the
constraint (12). At the solution (which clearly exists—why?) we either have ||hy| < A or
|he|| = A. If ||hg]] < A (so the constraint is not “active”) the gradient of the function
|Jhy, + £||* with respect to the components of hy must be zero. This gradient is easy to
compute and is given by 2(J7Jh;, + JTf). Setting this to zero yields equation (10) in the
case = 0, so for those A we associate y = 0.

Suppose, on the other hand, we have ||h;|| = A; T'll write this constraint as || h||* — A% =
0. A Calc IIT Lagrange multiplier argument shows that for some A we have the gradient of
|Jhy, + £||? is proportional to the gradient of ||h||> — A2, where all gradients are taken with
respect to the components of hy. The gradient of ||hg|[? — A? is just 2hy, so we obtain

2(J7Jhy, + J7f) = 2)\hy.

With g = —\ this is exactly equation (10) (recall that Vf = JTf).

Thus to each A > 0 we can associate a unique p > 0. Something like the converse is
true too: For each p > 0 there is some unique A > 0 (but for g = 0 any sufficiently large
A will work). We can show this by showing that the norm of the solution ||h|| to equation
(10) is strictly increasing with respect to p > 0. To prove this, note that the matrix J7J is
symmetric and (as we've assumed all along) positive definite, hence can be diagonalized as
JTJ = PDPT, where P is the matrix of orthonormal eigenvectors (hence P is an orthogonal
matrix) and D is diagonal with positive entries. Equation (10) can be written as

P(D + uI)PTh, = —V f(xz).
Multiply by PT and then (D + uI)~! on both sides to obtain
P'hy, = —(D + uI) 'PTV f(xz).

Take the norm of both sides above, noting that since PT is orthogonal we have |PThy| =
|hx|| and hence
]l = [|(D + pI)~'b]| (13)

where b = PTV f(x;). It’s easy to see that the right side above is strictly decreasing in
(for p > 0).

Exercise: Prove the right side of (13) is strictly decreasing in p.

From the above exercise we can conclude that for each > 0 there is only one A.

The trust region approach to the algorithm updates the parameter A instead of . The
idea is that the quadratic model ((4) and (6)) which underlies our whole procedure may be
good only for sufficiently small h. As such, minimizing the full least-squares functional by
trying to minimize ||Jhy + f||? may yield poor results if the resulting hy is allowed to be
too large. We thus minimize ||Jhy + f]|? subject to the restriction that hy lie in a region
where the approximation is valid (so that hy probably goes a good job of minimizing the full
non-linear least-squares functional in this range too). The size of the region is governed by
A, and in the trust region approach it is A that is increased or decreased as the algorithm
proceeds. The inequality |hg|| < A defines what is called the “trust region” about the
current operating point x;, where we think our quadratic approximation is valid.

Typically, if the algorithm is proceeding well (say p in (9) is greater than 0.9) the trust
region is expanded, by increasing A by some factor, typically 10. If the progress is poor
(say p < 0.1) we decrease A by a factor of 10. Note that at each step we have to solve a
minimization problem, that of minimizing ||Jhy, +f||* subject to (12). Ironically, this is done

with a root-finding approach, by varying p in equation (11) until we obtain a solution with
[yl = A

The Levenberg-Marquardt Algorithm

The ideas above form the basis for the Levenberg-Marquardt Algorithm, the standard for
non-linear least squares problems. One other refinement that can be made is to replace the
condition ||hg|| < A with ||[Ahg|| < A where A is some diagonal “scaling matrix” that can
be updated from iteration to iteration. This can be helpful if the least-squares functional
has greater or lesser sensitivity to the various independent variables x1, ..., z,; in this case
equation (10) is replaced by (J7J + uA)hy = —V f(x3), but otherwise the analysis is similar.
One common choice is to take the (i,7) diagonal entry of A as A;; = %(XO) (so A is fixed at
the outset). The paper “The Levenberg-Marquardt Algorithm: Implementation and Theory”

by Jorge J. Moré has a thorough description for a robust and efficient implementation.

