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1 Introduction

Let D be a bounded region in R" (we’ll focus on IR? for now) and wu(z,t)
the temperature of D, where x = (x1,...,2,) and t is time. We found that
(up to rescaling) w must satisfy the heat equation v, — Au = 0 in D, with
appropriate boundary and initial conditions. For now we’re going to study a
special case of the heat equation, that in which the solution assumes a steady-
state configuration, i.e., doesn’t depend on time ¢. In this case u; = 0; the
function u becomes a function only of the spatial variables and we find that
Au = 01in D. This is called Laplace’s Equation. The nonhomogeneous equa-
tion Au = f is called Poisson’s Equation.

Definition: A function w which satisfies Au = 0 is called harmonic.

Harmonic functions are a very special and important class of functions,
not only in PDE, but also in complex analysis, electromagnetics, fluids, etc.
But we can’t solve Au = 0 without more information. Specifically, the
Dirichlet boundary condition from the heat equation is still needed, so we
must specify v = h on 9D for some given function h. Alternatively we can
specify % = g on dD for a given function g, though it turns out that g must
satisfy a certain condition (more on this later) if a solution is to exist. The
initial condition from the heat equation is no longer relevant, since u doesn’t
change with time now. All in all then our problem is to find a function which
satisfies

Au = 0in D, (1)

w = h on 0D (2)
OR

gz = g on O0D. (3)

Before proceeding it might be instructive to consider a few examples of
harmonic functions. First, what does Poisson’s equation looks like in one



dimension? If D is the interval (a,b) then Poisson’s equation just becomes

u'(z) = f(z) in (a,b).

If have Dirichlet boundary conditions then u(a) = hy and w(b) = hg, where
hy and hy are some given numbers. This is easy to solve, just integrate twice
and choose the constants of integration to get the right boundary values; it
can always be done. In the special case that f = 0 the solution is a straight
line. Harmonic functions in one dimension are just linear functions.

Exercise: Work out the solution to u” = f with w(a) = hy, u(b) = hs
in terms of hy, hs,a,b, and F', where F” = f is a “second” anti-derivative for

f.

Now consider solving u”(xz) = 0 on (a,b) with Neumann data (the spe-
cial case f = 0). The Neumann condition at x = 0 is —u/(a) = g1 (we
use —u/(a), since the unit outward normal at x = a points in the MINUS z
direction) and u'(b) = go for some given ¢y, go. Integrate u”(z) = 0 once to
find «/(z) = m for some constant m. This immediately forces g = —m and
go = m for otherwise we have a contradiction. If we do indeed have g; = —¢»
then we can take m = g9, so u/(z) = mx, and integrating again shows that
u(z) = ma + ¢ is harmonic and has the right Neumann data for ANY choice
of ¢. In this case there is not a unique solution, but rather an entire family
of solutions, all differing by an additive constant.

Exercise: Consider solving u”(z) = f(z) on (a,b) with Neumann data
—u/(a) = g1, v (b) = go. What relation must hold between g1, g, and f
in order for a solution to exist? Will it be unique?

In two dimensions it’s easy to check that any linear function of the form

u(x,y) = ax+by+c for constants a, b, ¢, is harmonic. The function u(zx,y) =
2% — y? is also harmonic. Not surprisingly, there are infinitely many others.

2 Basic Properties of Laplace’s Equation

Let’s consider the big three questions for Laplace’s equation: Existence,
Uniqueness, and Stability. We’ll also consider the allied question of “what



interesting properties do harmonic functions have?” We are not yet in a po-
sition to answer all questions. We’ll deal with uniqueness and stability first,
but consider only special cases for existence. For the moment, let’s focus on
uniqueness.

2.1 Uniqueness

It’s easy to show that there is only one function that can satisfy Poisson’s
equation with given Dirichlet boundary data. Suppose that both u; and wus
are C? and satisfy Poisson’s equation with forcing function f and boundary
data hA. Then the function v = uy — 1y satisfies Av =0in D and v = 0 on
0D. We will show that v =0 in D, so u; = us in D.

Take the equation Av = 0 and multiply both sides by v to obtain v Av =
0. By Green’s first identity

/DvAvdV:/aDvgsz—/D|VU|2dV.

But since v = 0 on 0D and since Av = 0 this becomes
Vul2dV = 0. 4
/vel (4)

But |Vu|? is clearly non-negative on D; if the integral is zero then we must
have Vo = 0 on D, so that v is constant. But since v = 0 on 0D we conclude
that v = 0 throughout D. Thus u; = us in D.

Now consider the same situation but with Neumann data. The same
computations which led to equation (4) still work, and we conclude that
v = us — uy is constant. But since we now have only g—:’l = 0 on 0D, rather
than v = 0, we can’t conclude that v = 0 on D, only that v = ¢, so that
uy = uy + ¢. And indeed, it’s easy to see that if Auy; = f on D with % =g
then us = uy + ¢ satisfies the same conditions for any choice of c.

So when dealing with Neumann boundary conditions we obtain unique-
ness only up to an additive constant. We can obtain uniqueness by specifying
one additional condition, e.g., the value of the solution u at a given point in
D, or, for example, the condition that

/D u(z)dr = 0. (5)



Thus, for example, if two solutions with the same Neumann data differ by a
constant, say us = uj + ¢, and both satisfy the additional condition (5) we
can immediately deduce that ¢ = 0, so u; = us.

2.2 The Maximum Principle for Laplace’s Equation

Let u be a solution to Laplace’s equation Au = 0 which is C? on D with u
continuous up to and on the boundary of some region D (meaning that for
any point xg € 9D we have lim,_.,, u(x) = u(xy), where z limits to xy from
inside D). The maximum principle states that

supu(z) = sup u(z).

€D x€dD
Note that the supremum might also be attained somewhere inside D too
(consider the case in which u is constant)—the assertion is simply that it
must be attained on the boundary.

Proof: The is exactly like the proof of the maximum principle for the heat

equation. In fact, we use the same trick. Let v(z) = u(x) + €|z|?, where

|z| = \/2% 4 - - + 22 means the usual Pythagorean norm of z and € is some

small positive number. Then v has no maximum inside D, for if it did have
a maximum at x = p then

Av(p) = Au+4e >0

which is impossible at an interior maximum (from the second derivative test
in Calculus III). We can conclude that the maximum value of v occurs on
the boundary, so

supv(x) = sup v(z).
zeD x€dD

Suppose that p is a point in D at which v attains its maximum value. Then
we have, for z € D,

u(w) < v(@) < v(p) = u(p) +elpl* < sup u(a) +ed”

where d is the maximum distance from any point in D to the origin. But
since € is arbitrary we conclude that

u(x) < sup u(x).
x€0D
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The same reasoning applied to —u(z) proves that the minimum value is at-
tained on the boundary. Also, the same reasoning proves the

Extended Maximum Principle: If f > 0 on D then a function u satisfying
Au = f on D then u must attain its maximum value (but NOT necessarily
minimum) value on dD. Similarly if f < 0 then « must attain its minimum
(but not necessarily maximum) value on 9D.

Actually, the maximum principle provides yet another proof of unique-
ness. If u; and uy both satisfy Poisson’s equation on D with the same f and
Dirichlet data h then v = uy — uy is harmonic with zero boundary data. By
the maximum principle the maximum and minimum value attained by v on
D is attained on 0D, and hence is zero. Thus v must be identically zero, so
U = ug on D.

2.3 Stability

Suppose that u; and uy both satisfy Poisson’s equation with the same forcing
function, so Au; = f on D. Suppose that they have different boundary
conditions, say u; = h; on 0D, for j = 1,2. Then we can prove a stability
result, namely

sup [us () — uy(z)] < sup |ha(x) — by ().

zeD x€dD
In other words, if the functions h; and hy are close in the supremum norm
on 0D then u; and wuy are close in the supremum norm on all of D. The
proof is easy. Let v = us — u;. Then v is harmonic and has boundary data
ho — hy. Define

M = sup |hy(z) — ha(2)]
x€0D

and note that sup,cyp(he(z)—hi(x)) < M and inf,epp (he(z)—hi(x)) > —M.
By the maximum /minimum principle for harmonic functions

2161gv<w) < xSé%(hz(w)—hl(x))SM (6)
info(z) > inf (hy(x) = hi(e)) = =M, (7)



Also note that sup,cp |v| equals either sup,.,v(z) or —inf,cpv(z). Equa-
tions (6) and (7) then yield

sup |v] < M.
zeD

Thus if M (the supremum norm of hy —hy on 0D) is small then v has a small
supremum norm, i.e., u; is close to us in supremum norm.

2.4 The Green’s Function and Green’s Third Identity

Let x = (x1,79) denote a point in two dimensions and let |z| = /2% + 3.
The function

G(x) = - nla] (8)

is called the Green’s Function or Green’s Kernel or Fundamental Solution for
the Laplacian. In n dimensions with n > 3 the Green’s function is

1
Gz) = ——|z]*™" 9
(@) = ——la] )
where © = (z1,...,%,), || is the magnitude of z, and w, is the surface area

of the unit ball in n dimensions. The Green’s kernel here plays a similar role
as the Green’s kernel for the heat equation. First, you can easily check that

AG(z) =0

IF x # 0. At x = 0 the function G has an asymptote, so AG makes no sense
there. Here’s a picture of —G in two dimensions:



Note that G(x) is radially symmetric about the singularity. Along any radial
line from the singularity G' drops off with distance r as % In(r).

Given a fixed point y = (y1,...,¥,) in n dimensional space we can also
consider the function G(z — y), which translates G so that the singularity is
at = y. To understand the significance and usefulness of G we need Green’s
Third Identity, which we derive below for the two-dimensional case, though
it works in any dimension.

Recall Green’s second identity: Let D be a bounded domain in IR?; for
C? functions u and v we have

v ou
/D(uAv—vAu)dx—/aD(uan —van)ds
where n is an outward unit normal vector on 9D (where dz = dzy dxs and
ds is arc length) Let’s take y to be some fixed point inside D and then take
v(z) = G(z —y). Then AG = 0 for x # y, where it’s understood that
we apply A in the z variable. We want to put v = G into Green’s second
identity and see what comes out, but there’s one problem: G is NOT C? on
D, so Green’s identity isn’t valid. To get around this let us remove from D
a tiny ball B.(y) of radius € centered at y as illustrated below.



Let’s use the notation D, for D with the ball B.(y) removed. On D, the
function G(z — y) is smooth and so Green’s second identity is valid. If we
put in v(z) = G(z — y) (and w is still just some arbitrary C? function, not
necessarily harmonic) then we obtain

oG ou
/De G(x y)Au(x)dm—/aDe(uan Gan)ds (10)
where all derivatives hitting G are with respect to the x variable. Now notice
that 0D, really consists of two pieces: 0D and dB.(y). On 0D the vector n
points outward, while on 0B.(y) the vector n points INTO the ball (which
is OUT of D,). Let’s take equation (10) and split the integrals over 0D, into
integrals over 0D and 0B.(y) to obtain

oG ou
—/DEG(x—y)Au(x)d:U = /E)Dua—nds— 8DGé—nds
oG du
—ds — G—ds. (11
* aBe(mu(‘?n ° /83€(y) on ** (11)

Let’s look at what happens to equation (11) as € tends to zero.

Claim: As e approaches zero the integral on the left in equation (11) becomes
an integral over D. The last integral on the right vanishes, and the second
to last integral approaches —u(y). In summary, equation (11) becomes

—/DG(q;—y)Au(x)dx:/a W ds— [ ¢Pas—uly). (12

D On oD On



Proof: We'll examine the left side first, then the right side. First of all, I
claim that the left side tends to — [, G(x — y) A u(x) dz. To see this, look
at the difference

/ G(xr —y) Au(x)de — / G(r —y) Au(x)de = / G(z —y) Au(x) d.
D D. Be(y)

(13)
If u is C? then Au(z) is bounded by some constant C near the point = = ¥,
so the magnitude of the integral on the right above is bounded by

C

/ G(r —y) dx|.
Be(y)

Also, G(z —y) is just i In |x — y|, and this integral can be worked explicitly.
Just change variables—let w = & — y so dw = dx. This integral becomes

C G(w) dw.
B(0)

Switch to polar coordinates and the integral becomes, explicitly

c/%/ ~ In(r)rdrdf = C< (111()—;)

which approaches zero as € — 0. Thus the right side of equation (13) ap-
proaches zero, and so the integral over D, approaches the integral over D.

Now let’s examine the right side of equation (11). First, the terms in-
volving integral over 9D don’t even involve €, so there’s nothing to do there.
The very last term involving Gau tends to zero as € approaches zero. To see
this, note that if u is C? on D then 9 = Vu-n is bounded on dB,,). Thus
the final integral in equation (11) can be bounded by

C G(x —y)ds

9B.(y)

where the integral is with respect to x. Parameterize the boundary of B.(y)
as x1 =y + ecos(w), xa = ys + esin(w) for 0 < w < 2m. Also, ds = edv and
then this integral becomes

2r ]
C’/ —ln (€)edw = Celn(e)



which approaches zero as € — 0, as asserted.

Finally, let’s examine the most interesting term in equation (11), the
second to last integral on the right. First of all let’s again parameterize
the boundary of B.(y) as x1 = y; + €cos(w), 2 = ya + esin(w) for 0 <
w < 2m. Then ds = edw and an outward unit normal vector is just n =
(cos(w), sin(w)). It’s easy to check that

V.Gl(z,y) = (_371 — Y% X2 —y2>

omr2 T 22

where 12 = (21 — y1)? + (22 — ¥2)? and V, means compute the gradient with
respect to the z variable. Now compute g—g = V.G - n, making sure to put
everything in terms of w. We obtain

oG _ 1
on  2me
on dBy). Thus
2r ]
/{93@) ugff ds = —/0 Tmu(y + €(cos(w), sin(w))) dw. (14)

But since u is continuous, if € is small then u(y + ¢(cos(w), sin(w))) is close to
u(y) (which is constant in x). In the limit that e approaches zero the integral
on the right in equation (14) looks like

1 2w

—5culy) | dw=—u(y).

This proves that the second to last integral on the right in equation (11)
approaches u(y), as asserted, and finishes the proof of the claim.
In summary, we can write equation (12) as

u
uy) = [ Glr—y)Auaydrs [ ae)5 (ry)ds.— [ Gla—y) oo (r) ds.
(15)
where ds, means integrate with respect to x. This is Green’s Third Identity.
As a special case, suppose we have a harmonic function v on D, so Au =0
in D, with u = h on 9D and 2* = g on dD. Then Green’s third identity
tells us how to find u at any interior point y, as

u)= [ X pnyds— [ G-yl (16)

D On aD
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But be warned—if we simply make up functions g and h on 0D and plug
them into equation (16) we won’t obtain a harmonic function v with Dirichlet
data h and normal derivative g, for we already know that h alone determines
u, or likewise, g alone determines u up to an additive constant. We can’t
pick BOTH of them and expect to find a solution. If you do choose both and
plug into equation (16) you’ll end up with a function that is harmonic on D,
but it probably won’t have the correct Dirichlet OR Neumann data.

Exactly the same argument given above works in higher dimensions too,
though I won’t go through it in detail. But equations (15) and (16) are true
in R".

2.5 The Mean Value Property

This is without doubt the most amazing property of harmonic functions.
In fact, it’s a property that ONLY harmonic functions have. Suppose that
Au = 0 on some region D. Let B be a ball of radius r around some point
y = (y1,y2) in D (r not necessarily small, but small enough so B is contained
in D).

Claim: The value of u at the center of the ball equals the average value
of u over the boundary of the ball, i.e.,
1
= — u
|0B| JoB

where |0B| = 27r denotes the length of the boundary of B (or in n > 3
dimensions the surface “area” of the boundary).

To prove the Mean Value Property, start with Green’s third identity in
the form (16). We have

u(y) ds = 217r /027r u(yy + recos(w),ys + rsin(w))dw  (17)

oG
- I (e — y) ds,. — / Gz — ) 2 (2) ds,.
u) = [ u@)3 @ = y)dse— [ Gla—y)5 (@) ds,
Since B is a ball of radius r we’ll parameterize its boundary as x; = y; +
rcos(w), ro = Yo + rsin(w), so ds, = rdw. On 0B the function G(z — y)
becomes just a constant - In(r), while g—g also becomes a constant, ﬁ The
above equation becomes

1

~ 2mr

1
2

27 1
/ u(y; + rcos(w), ya + rsin(w))r dw + n(r) /a Ou ds, (18)
0

u(y) 21 B On
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The second integral above is actually zero. To see this note that if u is
harmonic then from Green’s FIRST identity with v(z) = 1 we have

/aBgzids:/BAudx:O.

Plugging this into equation (18) proves the claim.

Again, the same argument works in IR" for n > 2. The mean value
property even holds in one dimension, where it becomes the assertion that if
u” = 0 then

u(z) = 3 (ula —7) + u(e + 1))

which is certainly true for harmonic (i.e., linear) functions.
The mean value property also works if you use the interior of the ball,
instead of the boundary.

Exercise: Prove the last claim. Specifically, if 4 has the mean value property
in the form (17) then

1
u(y) = |B]/BUdA

where | B| = 47r? is the area of the ball B and dA means dz; dzs. Then prove
the converse; assume whatever continuity or differentiability you need from w.

The mean value property provides another proof of the maximum prin-
ciple. Informally, if 2 is an interior point for a region D then we can put
a small ball of some radius around zy. Now we can’t have u(xg) > u(x) for
all z € D, because u(zg) is an average of the values of v on the boundary of
any ball surrounding zy. But the average can never be larger than EVERY
point out of which it is constructed.

It turns out that harmonic functions are the ONLY ones which possess
the mean value property. This is easy to prove, at least if you're willing to
restrict your attention to C? functions. For the moment, let u be ANY C?
function. Choose a fixed point y in D and let B, denote a ball of radius r
around y (r small enough so B, is contained in D). Define a function ¢(r)
as

1
~ |0B,| Jo,

1 2m
o(r) uds = 2—/ u(yy + 7 cos(t), y2 + rsin(t)) dt.
7 Jo
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The function ¢(r) is just the average value of u over the ball of radius r
centered at y. Compute

d(r) = ! /027r <8u<y1 + 7 cos(t), ye + rsin(t)) cos(t)

% 8I1
ou . :
+ 6—(3/1 + rcos(t), ys + rsin(t)) sm(t)) dt
4op)
1 ou
= —d
|0B,| JoB, On i
1
= AudA. 1
0B,] /B u (19)

The last step is Green’s first identity. Equation (19) holds for any C? func-
tion. Note also that lim, .o+ ¢(r) = wu(y) if u is continuous, that is, any
continuous function has the mean value property on a ball of radius zero.

Now suppose that u is some function which is NOT harmonic. Then we
can find some ball Br contained in D with either Au > 0 or Au < 0 on
Bpg; assume the former. For r < R equation (19) forces ¢'(r) > 0. Since
lim, .o+ ¢(r) = u(y) this shows that u(y) < ¢(r) for any r > 0, that is,
u does not have the mean value property. A similar conclusion holds if
Au < 0 anywhere. The proves that if u has the mean value property then u
is harmonic.

By the way, this also gives another proof of the mean value property for
harmonic functions: If Au = 0 then ¢'(r) = 0, i.e., ¢ is constant. Since
lim, g+ ¢(r) = u(y), v must have the mean value property.
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