Applications to Data Smoothing and Image

Processing 1
MA 348
Kurt Bryan

Signals and Images

Let ¢ denote time and consider a signal a(¢) on some time interval, say 0 < ¢ < 1. We'll
assume that the signal a(¢) is a continuous or even differentiable function of time t.

Of course when you actually measure such a signal you measure it only at discrete times
ti,ta, ...ty let a; = a(t;) for 1 < i < n. Such measurements invariably contain noise,
so what we actually obtain is not a;, but rather y; = a; + ¢; where ¢; denotes noise or
measurement, error. Our goal is to recover the a; given measurements y;. Of course this
seems impossible. It is.

But we can do something if we're willing to make some a priori assumptions about the
nature of a(t) and the noise ¢;. Specifically, we will assume (for the moment) that a(t) is
differentiable and that all ¢; are identically distributed independent random variables (but
not necessarily normal). This is a pretty typical model for random noise (but not the only
one!)

Here’s a picture of the situation: Let ¢; = i/n for 1 < i < n, with n = 50 and a(t) = ¢2.
I take each ¢; to be independent and normally distributed with zero mean and standard
deviation 0.3. A plot of both the z; and y; = a; + ¢; is shown below:

1.5+
:
\VA/_Z\ R \/ v@& o8 1

0] o

~0.5-

Recovering the underlying “true” signal from the noisy version will be tough. What we’ve
got going for us is this: The underlying signal is assumed to be smooth and the noise is
“rough”. This gives us a way to try removing the noise without messing up the signal.

Consider recovering the a; by minimizing the function
1 n
e

The vector x = [z1, X, ..., 2, will represent our best estimate of the underlying signal. Of
course the minimum occurs at x; = y; = a; + €;, so this approach doesn’t remove any noise!
Let’s add an additional term to the objective function f to form

1 & 2 a2 (T —)2
- , b Litl T i 1
)= y’)+2§< h > @)

where « is to be determined. The claim is that by minimizing f(x) as defined by equation
(1), we recover a “noise-reduced” signal, at least if we choose « intelligently.

The reason is this: In the minimizing process the first term 7, (z; —;)? will try to force
x; &~ y;. But since h is small then the second term on the right in (1) encourages taking x;q
fairly close to x;, i.e., encourages a “smooth” reconstruction in which the z; don’t change
too rapidly, in contrast to the noisy y;. The second term involving « is a penalty term, of
which we’ll see more examples later. In this case this term penalizes estimates x; which vary
too rapidly. Taking o = 0 imposes no penalty, and the reconstructed signal is just the y;.

Finding the minimum of f(x) is in principle easy. The function is quadratic, so the
normal equations will be linear. Differentiate with respect to each variable z; to find

af _

g5 « (0%
8.75]- N h2

i+ (14 th) ~ 2% (2)

for 1 < j < n, while af = (1+73)x; — {322 and 5% = (1+ 3)2n — 35751 These equations
become Ax = a where A=1 + 7 =B with

1 -1 0 0 0
-1 2 -1 0 0
o -1 2 -1 0
B =
0 o -1 2 -1
0 0 0 -1 1 |
and a = [a1, aq, . ..,a,]’. This is a large SPARSE matrix. An excellent method for solving

is conjugate gradients, which of course involves minimizing the original f. So we really
didn’t need to derive the normal equations (I just wanted you to see an example where a
big linear system is equivalent to minimizing a certain function). What we're really doing is
minimizing f(x) = 3x7 Ax —x"a.

It also turns out that B is positive semi-definite (see if you can prove this. Hint: expand
out x'Bx) so that A =1 + ;5B will be positive definite if > 0. And A is obviously

symmetric.
Numerical Experiments

As mentioned, taking o = 0 will simply return the noisy sampled data as the smoothed
signal. That’s not interesting. Using the noisy data in the above figure, I took o = 1 and
used conjugate gradients to minimize f. Now note that o = 1 means the coefficient in the
penalty term is effectively a/h? = 2500, pretty big. The resulting smoothed signal looks like

a horizontal line!

1.5

05

O\/ PUREY \/ V0.6 0.8 1

0.5

The penalty is way too high, biased too heavily in favor of smoothing.
Taking o« = 0.01 yields a pretty good reconstruction:

1.5

Dropping « to 0.001 gives

1.5

05

~0.5

Now the noise, although smoothed, is more prominent.
Blocky Signals and Images

The ideas above generalize easily to reconstructing two dimensional signals, i.e., images.
A two dimensional signal or image on the unit square in IR* might be modelled as a(s,t),
where I'm using s and ¢ as 2D coordinates. This assumes that nature of the image at any
point can be represented by a single number, e.g., a grey-scale image. A sample of this signal
might look like a;; = a(s;,t;) where s; = i/n, t; = j/n for 1 <i,j < n. Our sample of the
signal would be something like y;; = a;; + €;; where the ¢;; are random and independent.

We can use the same approach as before. We construct a function f which contains a
sum of the form 3, (z;; — vij)? plus a penalty term. The penalty term can take many forms,
but one idea is to penalize any rapid change in the x or y directions. Thus the penalty
term might contain terms like (I“;lifﬁ, which penalizes x change, and (9““7*}17?])2, which
penalizes y change. We could then smooth or “de-noise” 2D signals in the same manner.

But there is a problem with this formulation. Images, even when free of noise, are NOT
usually smooth signals—think of a typical photograph. Images usually consists of many
“homogeneous” regions in which parameters vary little, separated by sharp transitions or
edges. The scheme above, and in particular the quadratic penalty term, doesn’t like these
transitions and tries to smooth them out, and so excessively blurs the image.

This is best seen using a 1D example. Consider the following one-dimensional “image”,
with a noisy version superimposed:

0.8
0.6
0.4

0.2

The true signal is only piecewise smooth, with a few sharp transitions or edges between
smooth regions. If you saw the smooth signal there’d be little doubt it’s uncorrupted by
noise. That’s what we want to recover from the noisy signal. But here’s the de-noised version
using a = 0.01 with a squared penalty term like in (1):

The edges of the image have been trashed! Decreasing a to 0.001 produces

in which the reconstructed smoothed signal now pretty much resembles the noisy signal.
There’s no suitable value for o in which we can obtain a relatively noise free image that
retains the edges that make up a good image.

Ideas for a Fix

What we really want to eliminate in a reconstructed image isn’t change, but unnecessary
change. We want to allow clean “jumps”, but penalize unnecessary up and down “jagged-
ness”. Consider the line z(t) = t/2 for 0 < ¢ < 1. The function rises from 0 to 1/2. We don’t
want to (excessively) penalize this kind of simple change, especially if it happens rapidly (say,
if the 1/2 rise occurs in a ¢ interval of length 0.01). What we want to penalize is a function
like z(t) = t/2 + sin(1007t), which also changes from 0 to 1/2, but in a very oscillatory
manner.

One way to do this is to change the penalty term to use absolute values instead of
squaring, so in the 1D case as described above we consider the objective function

) = 5 Dol =+ § 3 L)

Exercise

o Let z(t) = t/2 and z; = x(¢/100) for 1 <14 < 100. Note that z(¢) rises from 0 to 1/2
on the interval 0 <t < 1. Of course h = 0.01. Compute the penalty term on the right
in both equations (1) and (3).

Now let z(t) = 50t and x; = x(i/10000) for 1 < ¢ < 100. Note that x(t) rises from 0
to 1/2 on the interval 0 < ¢ < 0.01. Here A = 0.0001. Compute the penalty term on
the right in both equations (1) and (3).

Compare how each type of penalty treats the rise from 0 to 1/2.

The problem with minimizing f as defined by equation (3) is obvious: it’s not differen-
tiable. You could try an optimization algorithm that doesn’t require differentiability. The
obvious choice is Nelder-Mead, but on a problem of 50 or so variables this will be glacially
slow.

Here’s another idea: Let’s replace the absolute value with a smooth function which is
close to the absolute value. One nice choice is to take ¢(z) = v/2? +¢e. This function is
infinitely differentiable for € > 0, but if € is small then ¢(x) ~ |z|. We'll thus minimize

X) = 3 Dl — 4 § 3 A=) ()

This introduces another problem: if € is very small then near the minimum the func-
tion f will have large second derivatives, and this confuses optimization algorithms (think
about why, say in one dimension). So we’ll start by taking a relatively large value for € and
minimizing f. Then we’ll decrease € and use the previous minimize as an initial guess for
the smaller value of e. A few repetitions of this can be an effective method for locating a
suitable minimum. I set e = 0.01 and o = 0.01, then minimized f using a conjugate gradient

7

method. Then I set ¢ = 0.0001 and used the ¢ = 0.01 minimizer as a good initial guess. I
then found the minimum for € = 0.0001 and used that as an initial guess for ¢ = 1075, The
result is (without the noisy signal overlayed)

0.8
0.6
0.4

0.2

That’s a lot better. The noise has been damped out, but not at the expense of smoothing
the edges in the signal.

Remarks

These ideas are currently hot topics in applied math and image reconstruction. In fact,
if you let n (the number of sample points) tend to infinity you obtain a continuous version
of the optimization problem which fits naturally into the mathematical framework provided
by partial differential equations and the calculus of variations (a 200 year old subject which
is basically infinite-dimensional optimization). We’'ll look at these areas briefly in a couple
weeks.

If you're interested in the image restoration stuff, look at “Mathematical Problems in
Image Processing” by Gilles Aubert and Pierre Kornprobst, Springer-Verlag, 2001.

