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Conservation in Two Dimensions

Consider a two-dimensional region D in which some quantity flows. I’ll
call this quantity “stuff”. We want to generalize the continuity equation from
one space dimension to two (or more) space dimensions.

There’s no problem in generalizing the stuff density ρ. In two dimensions
density will be a function ρ(x1, x2, t) with units of stuff per area.

Generalizing the notion of flux requires slightly more care. In our case the
flux will be a vector-valued quantity q(x1, x2, t) =< q1(x1, x2, t), q2(x1, x2, t) >.
The function q is an example of a vector-field (in this case time-dependent).
For each time t and spatial point (x1, x2), q returns a two-dimensional vector.
The idea is that q captures both flow-rate and direction, but we need to be
just a bit careful in quantifying this.

At a fixed time t the vector field q might look like
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You might be tempted to think of q as the velocity of the stuff, but this is
NOT generally true (except in special cases). Recall that in one dimension
the rate-of-flow q(x, t) was simply the amount of stuff per unit time flowing
past the point x at time t. This isn’t the same as the velocity of the stuff, e.g.,
velocity has dimension length per time, while q has dimension stuff (Kg or
Coulombs, maybe) per time. How is the flow rate defined in two-dimensions?
What dimensions should it have?

Consider a vector field q like that shown in Figure 1. If the vector field
is well-behaved (smooth enough, i.e., continuous, or better yet, differentiable
in both time and space) then in the vicinity of any given point the vector
field is nearly constant, so the vectors all have nearly the same length and
direction. For example, at some specific time t near a general point (a, b) in
Figure 1, the vector field might look like

S
q

(a,b)

The vector field in this picture is essentially constant, and equal to q(a, b, t).
Consider, as pictured above, a short line segment S passing through the point
(a, b). The segment S is oriented so that it is perpendicular to the local flow.
It is intuitively clear that if q represents the rate of flow of stuff in the plane
then the amount of stuff flowing across S should be jointly proportional to
the magnitude of the vector q(a, b, t) and to |S|, the length of S; if we doubled
the length of S, twice as much stuff would flow over it, and if we double the
flow rate q we’d double the amount of stuff flowing over S per unit time. On
dimensional grounds, then, we need q to have dimensions such that q times
length has units of stuff per unit time, so q has units of stuff per length per
unit time. The vector q(a, b, t) is called the flux at the point (a, b), time t.
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More precisely, suppose some stuff flows around in the x1x2 plane. We’ll
define the flux q(a, b, t) at some point (a, b) and time t as follows: Let S be a
“short” line segment of length ϵ with midpoint (a, b) and unit normal vector
n. Rotate S (and so rotate n) until the flux of stuff across S in the direction
n is maximized. Call this particular line segment S(ϵ), it’s normal vector
n(ϵ), and the resulting maximum flux F (ϵ). We define q(a, b, t) as

q(a, b, t) = lim
ϵ→0

F (ϵ)

S(ϵ)
n(ϵ).

Exercises:

1. If q represents the mass flux of some fluid flowing in the plane, what
are reasonable MKS dimensions for q?

2. If q represents an electric current flux in the plane, what are reasonable
MKS dimensions for q?

3. If q represents the flow of heat energy, what are reasonable MKS di-
mensions for q?

Flux Across a Surface

In one dimension it was easy, given a flux function q, to figure out how
much “stuff” flows into and out of a one dimension interval. If the interval has
endpoints at x = a and x = b then at a fixed time t the flux in is q(a, t) and
the flux out is q(b, t), if positive q denotes left to right flow. The net input flux
at time t is then q(a, t)− q(b, t). This was a necessary ingredient in deriving
the continuity equation for conservation of stuff. In two or more dimensions
things get more complicated. We need to figure out how to quantify the rate
at which stuff flows into or out of some region, or more generally, across some
curve or surface.

The following discussion will lead us to the answer, and is a perfect il-
lustration of how one goes about setting up integrals in real problems. In
what follows we’ll simply assume that q is a function of x and y only, since
even for time-dependent fluxes we want to compute the flux only at fixed
moments in time.

1. Below is a constant vector field q; think of it as the flux of some “stuff”
flowing across the plane. The flow is perpendicular to the segment S.
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S

q

If the length of the line segment S is denoted by |S| and the magnitude
of the flux is |q|, it’s easy to see that the amount of stuff crossing S
per unit time is just |S||q|, just as we discussed above.

2. Suppose now that the flux or vector field is still constant, but at angle
θ to S:

S

q

θ

It’s not hard to see that the rate at which stuff is crossing S is just
|S||q| sin(θ).

3. Another way to write the flux across the line segment S is in terms of
vector operations. Suppose that n is a unit vector which is normal to
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S, as pictured below.

S

q

n

If q lies at an angle θ to S then q lies at angle π/2− θ to n. Thus the
flux is just |S||bfq| sin(θ) = |S||q| cos(π/2− θ). But this last quantity
is just |S|q · n. So the flux is

flux = |S|q(a, b) · n. (1)

This is the flux of a constant q over a straight line segment S.

4. We now have the means to compute the flux over any curve C, and it’s
just the type of reasoning used in Calc II. Given a curve C parame-
terized by x1 = x1(s), x2 = x2(s) for A ≤ s ≤ B, we do the following:
Partition the interval A ≤ s ≤ B into n short subintervals (si, si+1) for
0 ≤ i ≤ n − 1, with s0 = A and sn = B. Consider that small part
dCi of the curve C parameterized by (x1(s), x2(s)) for si ≤ s ≤ si+1.
If si+1 − si is small (and the curve sufficiently smooth) then dC is
approximately a line segment, of length

dSi =
√
(x1(si+1)− x1(si))2 + (x2(si+1)− x2(si))2. (2)

But from the tangent line approximation (or just definition of the
derivative) we have x1(si+1)−x1(si) = (si+1−si)x

′
1(si)+O((si+1−si)

2),
at least if x1 is twice-continuously differentiable. Similarly x2(si+1) −
x2(si) = (si+1 − si)x

′
2(si) + O((si+1 − si)

2). Plug this information into
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equation (2) to find

dSi =
√
(x′

1(si))
2 + (x′

2(si))
2(si+1 − si) +O((si+1 − si)

2). (3)

We’re going to drop the O((si+1−si)
2) now (it will go away in the limit

we’re about to take).

If si+1 − si is small then the curve dCi is short and q is approximately
constant near dCi, and in fact about equal to q(x1(si), x2(si)). The
flux over dCi is thus (to second order)

dFi = q(x1(si), x2(si)) · n(si) dSi. (4)

All we need now is an explicit expression for the unit normal vector n
in terms of the parameterization.

Recall that for a parametric curve x1 = x1(s), x2 = x2(s), the vector
< x′

1(s), x
′
2(s) > is tangent to the curve. It’s easy to check that the

vector < x′
2(s),−x′

1(s) > is normal to the curve (it’s the 90 degree
clockwise rotation of the tangent vector). We can make it a unit vector
by dividing it by its own length, and so we can take

n(si) =
< x′

2(si),−x′
1(si) >√

(x′
1(si))

2 + (x′
2(si))

2
(5)

As the unit normal vector to C at s = si (and also on dCi, approxi-
mately). If we plug this expression for n into equation (4) and use equa-
tion (3) we obtain, after dropping all but the most significant terms,

dFi = [q(x1(si), x2(si))· < x′
2(si),−x′

1(si) >](si+1 − si). (6)

The total flux over the curve C is approximately

n−1∑
i=0

dFi.

If we let n → ∞ the sum above becomes, by the usual Riemann sum
process, the “true” flux over C, written

∫
C q ·n dS, and given explicitly

by∫
C
q · n dS =

∫ B

A
(q1(x1(s), x2(s))x

′
2(s)− q2(x1(s), x2(s))x

′
1(s)) ds. (7)
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Example

Consider a curve S in the plane defined by x1 = 2 cos s, x2 = sin s,
0 ≤ s < 2π. Note that the normal vector field n defined by equation (5)
really does point outward. Suppose that the flow of some fluid in the plane
is described by the vector field q(x1, x2) = (x1 + 5)i + (x2

2 + 1)j, pictured
below:
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By formula (7) the total flux of q over the curve S is given by∫ 2π

0
[(2 cos(s) + 5) cos(s) + (sin2(s) + 1)(2 sin(s))] ds = 2π.

(Note that wherever x1 appears in the integral, it is replaced by 2 cos s, and
similarly for x2). This is the net OUTWARD flux (in the direction of n).
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