Conjugate Gradient Methods
MA 348
Kurt Bryan

Introduction

We want to minimize a nonlinear twice continuously differentiable function of n variables.
Taylor’s Theorem shows that such functions are locally well-approximated by quadratic
polynomials. It then seems reasonable that methods which do well on quadratics should do
well on more general nonlinear functions, at least once we get close enough to a minimum.
This simple observation was the basis for Newton’s Method.

But Newton’s Method has some drawbacks. First, we have to be able to compute the
Hessian matrix, which is n by n, and we have to do this at every iteration. This is a serious
problem for a function of 1000 variables, both in computational time and storage. Second,
we have to solve a dense n by n system of equations, also time consuming. Finite difference
approximations for the derivatives doesn’t really resolve these issues.

It would be nice to come up with optimization algorithms that don’t require use of the
full Hessian, but which, like Newton’s method, perform well on quadratic functions. This
is what conjugate gradient methods do (and also quasi-Newton methods, which we’ll talk
about later). First, we’ll study the efficient minimization of quadratic functions (without
the use of second derivatives).

Quadratic Functions

Suppose that f(x) is a quadratic function of n real variables in the form. Such a function
can always be written in the form

f(x) = ;XTAX—FXT]Z)—{—C (1)

for some n by n matrix A, n vector b and scalar ¢. The 1/2 in front isn’t essential, but it make
things a bit cleaner later. You should convince yourself of this (see exercise below). Also,
there’s no loss of generality in assuming that A is symmetric, because (x? Ax)T = xTATx
for all x, and so we have

1
xTAx = XT(§<A +AT))x
for all x, and %(A + AT) is symmetric. In short, A can be replaced with %(A + AT).

Exercise 1

o Write f(z1,79) = 23 + x129 + 423 — 321 + 23 + 1 in the form (1) with A symmetric.

1

We'll consider for now the problem of minimizing a function of the form (1) with A
symmetric. It will be useful to note, as we did in deriving Newton’s method, that

Vf(x)=Ax+b (2)

where V f is written as a column of partial derivatives. You can convince yourself of this
fact by writing things out in summation notation,

1. n
=1

i=1j=1

then differentiating with respect to z; (and using the symmetry of A, ie., Ay = Ag) to
obtain

1.7

i=1

of

Oy

1 n
2
n
i=1

which is exactly the component-by-component statement of equation (2). You can use the
same reasoning to check that the Hessian matrix for f is exactly A.

We also will assume that A is positive definite. In this case f has a unique critical point,
and this critical point is a minimum. To see this, note that since A is positive definite, A is
invertible, and hence from (2) the only critical point is —A~'b. As we showed in analyzing
Newton’s method, this must be a minimum if the Hessian of f (in this case just A) is positive
definite.

Minimizing Quadratic Functions

Let’s start with an example. Let n = 3 and let A = 2I, the n by n identity matrix. In
this case f(x) = 2% +12%+ 3. Of course the unique minimum is at the origin, but pretend we
want to find it with the “one-variable at a time” algorithm, in which we take an initial guess
and then do line searches in directions eq, ey, €3, and then repeat the cycle (here e; is the
standard coordinate vector in the z; direction). If we start with initial guess xo = (1,2, 3)
and minimize in direction e; (i.e., in the variable x;) we find x; = (0,2,3) from this line
search. Now do a line search from point x; using search direction e, to find xs = (0,0, 3).
Note an important fact: the second line search didn’t mess up the first line search, in the
sense that if we now repeated the e; search from x5 we’d find we're ALREADY at the
minimum. Of course the third line search from x, in the direction ez takes us to the origin,

and doesn’t mess up the results from the previous line searches—we’re still at a minimum
with respect to x; and x5, i.e., the global minimum. This approach has taken us to the
minimum in exactly 3 iterations.

Contrast the above situation with that obtain by using this technique but instead on the
function f(x1, 29, 73) = 22 + x125 + 735 + 23, again with x¢ = (1,2,3). The first line search
in direction e; takes us to x; = (—1,2,3). The second line search from x; in direction ey
takes us to x5 = (—1,1/2,3). But now note that the e, search has “messed up” the first line
search, in that if we now repeat a line search from x5 in the direction e; we find we’re no
longer at a minimum in the x; variable (it has shifted to 1 = —1/4).

The problem in the second case is that the search directions e; partially conflict with each
other, so each line search partly undoes the progress made by the previous line searches. This
didn’t happen for f(x) = x’Ix, and so we got to the minimum quickly.

Line Searches and Quadratic Functions

Most of the algorithms we’ve developed for finding minima involve a series of line searches.
Consider performing a line search on the function f(x) = c+x’b+ %XTAX from some base
point a in the direction v, i.e., minimizing f along the line L(¢) = a + tv. This amounts to
minimizing the function

1 1
g(t) = fla+tv) = §VTAV252 + (viAa+vib)t + §aTAa +a’b +ec (3)

Since %VTAV > 0 (A is positive definite), the quadratic function g(t) ALWAY'S has a unique

global minimum in ¢, for ¢ is quadratic in ¢ with a positive coefficient in front of 2. The

minimum occurs when ¢'(t) = (v Av)t + (vI Aa+ vT'b) =0, i.e., at t = t* where
vI'(Aa+b) vIVf(a)

= — = —) 4
vIiAv vIAv (4)

Note that if v is a descent direction (vI'V f(a) < 0) then ¢* > 0.

Another thing to note is this: Let p = a + t*v, so p is the minimum of f on the line
a-+tv. Since ¢'(t) = Vf(a+tv)-v and ¢'(t*) = 0, we see that the minimizer p is the unique
point on the line a + tv for which (note vI'Vf =v-Vf)

Vip) v=0. (5)

Thus if we are at some point b in R" and want to test whether we’re at a minimum for a
quadratic function f with respect to some direction v, we merely test whether V f(b)-v = 0.

Conjugate Directions

Look back at the example for minimizing f(x) = x'Ix = 2% + 23 + 23. We minimized
in direction e; = (1,0,0), and then in direction e = (0,1,0), and arrived at the point
x3 = (0,0,3). Did the ey line search mess up the fact that we were at a minimum with
respect to e;? No! You can check that Vf(xy) - e; = 0, that is, xo minimizes f in BOTH
directions e; AND e,. For this function e; and e; are “non-interfering”. Of course ez shares
this property.

But now look at the second example, of minimizing f(x) = 2% + 129 + 73 + 23. Af-
ter minimizing in e; and ey we find ourselves at the point xo = (—1,1/2,3). Of course
V f(x2) - €2 = 0 (that’s how we got to x5 from x;—by minimizing in direction ey). But the
minimization in direction e; has destroyed the fact that we’re at a minimum with respect
to direction e;: we find that V f(x3) - e; = —3/2. So at some point we’ll have to redo the
e; minimization again, which will mess up the e; minimization, and probably ez too. Every
direction in the set ey, ey, e3 conflicts with every other direction.

The idea behind the conjugate direction approach for minimizing quadratic functions is
to use search directions which don’t interfere with one another. Given a symmetric positive
definite matrix A, we will call a set of vectors dy,dy, ...,d,_1 conjugate (or “A conjugate”,

or even “A orthogonal”) if
d’Ad; =0 (6)

for i # j. Note that d7 Ad; > 0 for all i, since A is positive definite.

Theorem 1: If the set S = {do,dy,...,d,_1} is conjugate and all d; are non-zero then
S forms a basis for IR".

Proof: Since S has n vectors, all we need to show is that S is linearly independent, since it
then automatically spans IR". Start with

Cldl +02d2 + - +Cndn =0.

Multiply on the right by A, distribute over the sum, and then multiply the whole mess by
d! to obtain

We immediately conclude that ¢; = 0, so the set S is linearly independent and hence a basis
for R".

Example 1: Let

I
o — w
MO DD
O

Choose dy = (1,0,0)". We want to choose d; = (a, b, c) so that df Ady = 0, which leads to
3a+b = 0. So choose d; = (1,—3,0). Now let dy = (a,b,c) and require d¥ Ady = 0 and
dTAdy = 0, which yields 3a + b = 0 and —5b — 6¢ = 0. This can be written as a = —b/3
and ¢ = —5b/6. We can take dy = (—2,6, —5).

Here’s a simple version of a conjugate direction algorithm for minimizing f(x) = %XTAX-F
x'b + ¢, assuming we already have a set of conjugate directions d;:

1. Make an initial guess xy. Set k = 0.

2. Perform a line search from x; in the direction d. Let x;.; be the unique minimum of
f along this line.

3. If Kk =n—1, terminate with minimum =z, else increment k£ and return to the previous
step.

Note that the assertion is that the above algorithm locates the minimum in n line searches.
It’s also worth pointing out that from equation (5) (with p = x441 and v = d;) we have

Vf(Xk41) - de = 0 (7)

after each line search.

Theorem 2: For a quadratic function f(x) = $x7Ax + b'x + ¢ with A positive defi-
nite the conjugate direction algorithm above locates the minimum of f in (at most) n line
searches.

Proof:

We'll show that x,, is the minimizer of f by showing V f(x,) = 0. Since f has a unique
critical point, this shows that x,, is it, and hence the minimum.

First, the line search in step two of the above algorithm consists of minimizing the function

g(t) = f(xx + tdg). (8)

Equations (3) and (4) (with v = dj; and a = x;) show that

Xppt1 = Xp + apdy (9)
where
d] Ax; +dfb dl vV f(xx)
ap = — T = — T . (10)
dk Adk dk Adk
Repeated use of equation (9) shows that for any k& with 0 < k£ <n — 1 we have
Xy = Xpy1 + pp1dpp1 + appodigr + -0 + ap1dyg. (11)

5

Since V f(x,) = Ax, + b we have, by making use of (11),

Vf(xn) = Axp+b+ o Adggr + - ap1Adyy
n—1

i=k+1

Multiply both sides of equation (12) by d} to obtain

n—1
diVf(x,) =diVf(xps1) + > odiAd,.
i=k+1

But equation (7) and the conjugacy of the directions d; immediately yield
d}Vf(x,) =0

for k =0 to k = n — 1. Since the dj form a basis, we conclude that V f(x,) = 0, so x,, is
the unique critical point (and minimizer) of f.

Example 2: For case in R? in which A = I, it’s easy to see that the directions ey, e, 5 are
conjugate, and so the one-variable-at-a-time approach works, in at most 3 line searches.

Example 3: Let A be the matrix in Example 1, f(x) = %XTAX, and we already com-
puted dg = (1,0,0), d; = (1,-3,0), and dy = (—2,6, —5). Take initial guess xq = (1,2, 3).

A line search from xq in direction dg requires us to minimize

3 75
g(t) = f(xo + tdy) = 5152 +5t+ o

which occurs at ¢ = —5/3, yielding x; = xo — 2dy = (—2/3,2,3). A line search from x; in
direction d; requires us to minimize

15 100
g(t) = f(x; +tdy) = ?tQ — 28+

which occurs at ¢ = 28/15, yielding x, = x; + 2d; = (6/5, —18/5,3). The final line search
from X5 in direction dy requires us to minimize

36
g(t) = f(xy +tdy) = 20> — 24t + =

which occurs at t = 3/5, yielding x3 = x5 + %dg = (0,0,0), which is of course correct.

Exercise 2

e Show that for each k, d] Vf(x;) = 0 for j = 0...k — 1 (i.e., the gradient V f(xy) is
orthogonal to not only the previous search direction dy_;, but ALL previous search
directions). Hint: For any 0 < k < n, write

Xp = Xjp1 + ajpdjp + o+ apodi

where 0 < j < k. Multiply by A and follow the reasoning before (12) to get

k—1

Vf(Xk) = Vf(Xj+1) + Z Oé“AdZ

i=j11
Now multiply both sides by dI, 0 < j < k.

Conjugate Gradients

One drawback to the algorithm above is that we need an entire set of conjugate directions
d; before we start, and computing them in the manner of Example 1 would be a lot of work—
more than simply solving Ax = —b for the critical point.

Here’s a way to generate the conjugate directions “on the fly” as needed, with a minimal
amount of computation. First, we take dy = —V f(x9) = —(Axo+b). We then perform the
line minimization to obtain point x; = xg + apdyp, with «q given by equation (10).

The next direction d; is computed as a linear combination d; = —V f(x;) + Sod of the
current gradient and the last search direction. We choose 3 so that df Ady = 0, which gives

Vf(Xl)TAdo
bo=—qraa.
0 0

Of course dy and d; form a conjugate set of directions, by construction. We then perform a
line search from x; in the direction d; to locate x,.
In general we compute the search direction d; as a linear combination

di = =V f(xp) + fr—1dir—1 (13)

of the current gradient and the last search direction. We choose 3j_; so that df Ad,_; = 0,

which forces
- Vf<Xk)TAdk—1

Bk—l - dZ_IAdk_l

We then perform a line search from x; in the direction d; to locate x;.1, and then repeat
the whole procedure. This is a traditional conjugate gradient algorithm.

(14)

By construction we have df Ad;_; = 0, that is, each search direction is conjugate to the
previous direction, but we need df Ad; = 0 for ALL choices of i # j. It turns out that this
is true!

Theorem 3: The set of search directions defined by equations (13) and (14) for k£ = 1
to k =n (with dy = —V f(x)) satisfy d] Ad; = 0, and so are conjugate.

Proof: We'll do this by induction. We’ve already seen that dy and d; are conjugate.
This is the base case for the induction.

Now suppose that the set dg,d;,...,d,, are all conjugate. We’ll show that d,,.; is
conjugate to each of these directions.

First, it will be convenient to note that if the directions d; are generated according to
(13) and (14) then V f(xy41) is orthogonal to V f(x;) for 0 < j < k < m. To see this rewrite
equation (13) as

VI(x)) = Bj-1dj-1 — d;.

Multiply both sides by V f(x41)T to obtain

Vf(XkJrl)va(Xj) = 5j71Vf(Xk+1)de—1 - Vf(xk+1)de'

But from the induction hypothesis (the directions do, ..., d,, are already known to be con-
jugate) and Exercise 2 it follows that the right side above is zero, so
Vf(xk1)' VI(x;) =0 (15)

for 0 < j < k as asserted.
Now we can finish the proof. We already know that d,,. is conjugate to d,,, so we need
only show that d,,41 is conjugate to dy for 0 < k& < m. To this end, recall that

A1 = VI (Xns1) + B
Multiply both sides by df A where 0 < k < m to obtain
d{Ad,,,1 = —d] AV f(Xpi1) + Bndi Ad,,.
But df Ad,, = 0 by the induction hypothesis, so we have
dfAd,, 1 = —dfAVf(Xpy1) = —Vf(Xme1) Ady. (16)

We need to show that the right side of equation (16) is zero.
First, start with equation (9) and multiply by A to obtain Axy.; — Ax; = o, Ady, or
(Axj4 +b) — (Ax; + b) = o, Ady. But since Vf(x) = Ax + b, we have

Vf(Xk+1) - Vf(Xk) = OékAdk

8

or
1
Ady = (VI (Xe1) = V() (17)
Substitute the right side of (17) into equation (16) for Ady to obtain

dede = (Vf(xm+1)TVf(xk+1) - Vf(XmH)TVf(Xk))

1

ay
for k < m. From equation (15) the right side above is zero, so df Ad,,y1 = 0 for k < m.
Since d! Ad,,;1 = 0 by construction, we’ve shown that if do, ..., d,, satisfies df Ad; = 0
for ¢ # j then so does do, . ..,d,,,d,,+1. From induction it follows that dy,...,d, also has
this property. This completes the proof.

Exercise 3

e [t may turn out that all d; = 0 for ¢ > m for some m < n—mnamely, if the mth line
search takes us to the minimum. However, show that if we’re not at the minimum at

iteration k (so V f(xx) # 0) then d; # 0.

Here’s the “pseudocode” for this conjugate gradient algorithm for minimizing f(x) =
xTAx +x'b + ¢

1. Make an initial guess xg. Set dg = —V f(x) (note Vf(x) = Ax+b) and k£ = 0.

2. Let Xj41 be the unique minimum of f along the line L(t) = xj, + tdy, given by x4, =

Xy + tpdy where
_def(xk) B _d;‘f(Axk +b)

- —
g dTAd, dTAd,
3. If k =n — 1, terminate with minimum x,,.
4. Compute new search direction dyy1 = =V f(X41) + Bxdy where
Vf(X]H_l)TAdk
B =) 18
g dTAd, (18)

Increment k and return to step 2.
Exercise 4:

e Run the conjugate gradient algorithm above on the function f(x) = %XTAX +x'b
with
3 0 2 1
A=|011|, b=| 0
21 3 -1
Use initial guess (1,1, 1).

An Application

As discussed earlier, if A is symmetric positive definite, the problems of minimizing
f(x) = 3x"Ax + x"b + ¢ and solving Ax + b = 0 are completely equivalent. Systems like
Ax+b = 0 with positive definite matrices occur quite commonly in applied math, especially
when one is solving partial differential equations numerically. They are also frequently
LARGE, with thousands to even millions of variables.

However, the matrix A is usually sparse, that is, it contains mostly zeros. Typically the
matrix will have only a handful of non-zero elements in each row. This is great news for
storage—storing an entire n by n matrix requires 8n? bytes in double precision, but if A has
only a few non-zero elements per row, say 5, then we can store A in a little more than 5n
bytes.

Still, solving Ax + b = 0 is a challenge. You can’t use standard techniques like LU or
Cholesky decomposition—the usual implementations require one to store on the order of n?
numbers, at least as the algorithms progress.

A better way is to use conjugate gradient techniques, to solve Ax = —b by minimizing
1xTAx 4+ x"b + c. If you look at the algorithm carefully you'll see that we don’t need to
store the matrix A in any conventional way. All we really need is the ability to compute Ax
for a given vector x.

As an example, suppose that A is an n by n matrix with all 4’s on the diagonal, —1’s on
the closest fringes, and zero everywhere else, so A looks like

4 -1 0 0 O
-1 4 -1 0 O
A= 0 -1 4 -1 0

in the five by five case. But try to imagine the 10,000 by 10,000 case. We could still store
such a matrix in only about 240K of memory (double precision, 8 bytes per entry). This
matrix is clearly symmetric, and it turns out it’s positive definite.

There are different data structures for describing sparse matrices. One obvious way
results in the first row of the matrix above being encoded as [[1, 4.0], [2, —1.0]]. The [1,4.0]
piece means the first column in the row is 4.0, and the [2, —1.0] means the second column
entry in the first row is —1.0. The other elements in row 1 are assumed to be zero. The rest
of the rows would be encoded as [[1,-1.0],[2,—4.0],[3, —1.0]], [[2,—1.0],[3,4.0],[4, —1.0]],
[[3,—1.0],[4,4.0],[5,—1.0]], and [[4, —1.0], [5,4.0]]. If you stored a matrix this way you could
fairly easily write a routing to compute the product Ax for any vector x, and so use the
conjugate gradient algorithm to solve Ax = —b.

A couple last words: Although the solution will be found exactly in n iterations (modulo
round-off) people don’t typically run conjugate gradient (or any other iterative solver) for

10

the full distance. Usually some small percentage of the full n iterations is taken, for by then
you're usually sufficiently close to the solution. Also, it turns out that the performance of
conjugate gradient, as well as many other linear solvers, can be improved by preconditioning.
This means replacing the system Ax = —b by (BA)x = —Bb where B is some easily com-
puted approximate inverse for A (it can be pretty approximate). It turns out that conjugate
gradient performs best when the matrix involved is close to the identity in some sense, so
preconditioning can decrease the number of iterations needed in conjugate gradients. Of
course the ultimate preconditioner would be to take B = A~!, but this would defeat the
whole purpose of the iterative method, and be far more work!

Non-quadratic Functions

The algorithm above only works for quadratic functions, since it explicitly uses the matrix
A. We're going to modify the algorithm so that the specific quadratic nature of the objective
function does not appear explicitly—in fact, only V f will appear, but the algorithm will
remain unchanged if f is truly quadratic. However, since only V f will appear, the algorithm
will immediately generalize to any function f for which we can compute Vf.

Here are the modifications. The first step in the algorithm on page 9 involves computing
dyp = —V f(x0). There’s no mention of A here—we can compute Vf for any differentiable
function.

In step 2 of the algorithm on page 9 we do a line search from x; in direction dj. For
the quadratic case we have the luxury of a simple formula (involving t;) for the unique
minimum. But the computation of ¢, involves A. Let’s replace this formula with a general
(exact) line search, using Golden Section or whatever line search method you like. This will
change nothing in the quadratic case, but generalizes things, in that we know how to do line
searches for any function. Note this gets rid of any explicit mention of A in step 2.

Step 4 is the only other place we use A, in which we need to compute Ady in order to
compute ;. There are several ways to modify this to eliminate explicit mention of A. First
(still thinking of f as quadratic) note that since (from step 2) we have x;.1 — X, = cdy, for
some constant ¢ (where ¢ depends on how far we move to get from x; to x;11) we have

Vf(XkJrl) — Vf(Xk) = (AXk+1 + b) — (AXk + b) = CAdk (19)

Thus Ady, = 2(Vf(xpt1) — Vf(xx)). Use this fact in the numerator and denominator of the
definition for fj in step 4 to obtain

V(%) (Vf (k1) — VI (x2))
dif (Vf(Xk41) = Vf(x1))
Note that the value of ¢ was irrelevant! The search direction djy; is as before, dyy 1 =

—Vf(Xg11) + Bedg. If f is truly quadratic then definitions (18) and (20) are equivalent. But
the new algorithm can be run for ANY differentiable function.

B =

(20)

11

Equation (20) is the Hestenes-Stiefel formula. It yields one version of the conjugate
gradient algorithm for non-quadratic problems.

Here’s another way to get rid of A. Again, assume f is quadratic. Multiply out the
denominator in (20) to find

di (Vf (k1) = VI (x1)) = di VI (xe41) — d VI (x).-
But from equation (7) (or Exercise 2) we have df V f(x511) = 0, so really
di (Vf(xk11) = V(i) = —di Vf ().
Now note d, = =V f(xx) + Br—1dk_1 so that
di (Vf(xe1) = V(i) = =(=Vf(x)" + B di)V (x) = [V f ()

since by equation (7) again, d}_,V f(x;) = 0. All in all, the denominator in (20) is, in the
quadratic case, |V f(xy)|?. We can thus give an alternate definition of 3 as

Vf(XkH)T(Vf(XkH) — Vf(xz))
|V f () |? '

Again, no change occurs if f is quadratic, but this formula generalizes to the non-quadratic
case. This formula is called the Polak-Ribiere formula.

Br = (21)

Exercise 5

e Derive the Fletcher-Reeves formula (assuming f is quadratic)

_ V)P

P =

(22)

Formulas (20), (21), and (22) all give a way to generalize the algorithm to any differ-
entiable function. They require only gradient evaluations. But they are NOT equivalent
for nonquadratic functions. However, all are used in practice (though Polak-Ribiere and
Fletcher-Reeves seem to be the most common). Our general conjugate gradient algorithm
now looks like this:

1. Make an initial guess xq. Set dg = —V f(x¢) and k& = 0.

2. Do a line search from x; in the direction d;. Let x;,,; be the minimum found along
the line.

3. If a termination criteria is met, terminate with minimum x_ .

12

4. Compute new search direction dgy1 = —V f(xx11) + Brdr where [y, is given by one of
equations (20), (21), or (22). Increment k and return to step 2.

Exercise 6

e Verify that all three of the conjugate gradient algorithms are descent methods for any
function f. Hint: it’s really easy.

Some people advocate periodic “restarting” of conjugate gradient methods. After some
number of iterations (n or some fraction of n) we re-initialize dj, = —V f(x). There’s some
evidence this improves the performance of the algorithm.

13

